精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期是$\frac{π}{5}$,则ω=10.

分析 直接利用正弦函数的周期求解即可.

解答 解:函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期是$\frac{π}{5}$,
可得$\frac{2π}{ω}=\frac{π}{5}$,解得ω=10.
故答案为:10.

点评 本题考查三角函数的周期的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知sinα+cosα=-$\frac{1}{2}$,α∈(0,π),则tanα=(  )
A.$\frac{-4+\sqrt{7}}{3}$B.$\frac{-4±\sqrt{7}}{3}$C.$\frac{4-\sqrt{7}}{3}$D.$\frac{-4-\sqrt{7}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设整数a,b,c与实数r满足:ar2+br+c=0,ac≠0,证明:$\sqrt{{r}^{2}+{c}^{2}}$是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知cosA=$\frac{3}{5}$,cosB=$\frac{15}{17}$,则cosC等于(  )
A.-$\frac{13}{85}$B.$\frac{13}{85}$C.-$\frac{77}{85}$D.$\frac{77}{85}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.tan(-165°)的值是(  )
A.2+$\sqrt{3}$B.-2-$\sqrt{3}$C.2-$\sqrt{3}$D.$\sqrt{3}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}=\overrightarrow{{e}_{1}}+3\overrightarrow{{e}_{2}}$,$\overrightarrow{b}=\overrightarrow{{e}_{1}}+\frac{1}{3}\overrightarrow{{e}_{2}}$($\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$是同一平面内的两个不共线向量),则$\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}$=$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:$(3\frac{3}{8})^{-\frac{2}{3}}-(5\frac{4}{9})^{0.5}$+$(0.008)^{-\frac{2}{3}}$÷$(0.02)^{-\frac{1}{2}}$×$(0.32)^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列{an}的各项都为正数,其前n和为Sn,且a1+a7=9,a4=2$\sqrt{2}$,则S6=7$\sqrt{2}$+7或7$\sqrt{2}$+14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知曲线C的极坐标方程是ρ2-4ρcosθ-2psinθ=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在平面直角坐标系中,直线经过点P(1,2),倾斜角为$\frac{π}{6}$.
(1)写出曲线C的直角坐标方程和直线的参数方程;
(2)设直线与曲线C相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案