精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
2
sin2x-cos2x-
1
2

(1)求函数f(x)在[0,
π
2
]的最大值和最小值,并给出取得最值时的x值;
(2)设△ABC的内角A、B、C的对边分别为a,b,c,且c=
3
,f(C)=0,若sinB=2sinA,求a,b的值.
考点:三角函数中的恒等变换应用,正弦定理
专题:三角函数的求值,三角函数的图像与性质,解三角形
分析:(1)首先对函数关系式进行恒等变换,把函数的关系式变形成正弦型函数,进一步利用函数的定义域求出函数的值域.
(2)根据(1)的函数关系式,进一步利用正弦和余弦定理求出三角形的边长.
解答: 解:(1)f(x)=
3
2
sin2x-cos2x-
1
2

=
3
2
sin2x-
cos2x+1
2
-
1
2

=sin(2x-
π
6
)
-1
由于:x∈[0,
π
2
]

所以:-
π
6
≤2x-
π
6
6

则:-
1
2
≤sin(2x-
π
6
)≤1

则:-
3
2
≤f(x)≤0

即当x=
π
3
时,函数取最大值,
当x=0时,函数取最小值.
(2)由于f(x)=sin(2x-
π
6
)-1

则:f(C)=0
解得:sin(2C-
π
6
)-1=0

0<C<π
所以:C=
π
3

又:sinB=2sinA
则:b=2a
利用余弦定理得:c2=a2+b2-2abcosC
由于c=
3

所以解得:a=1
进一步求得:b=2
点评:本题考查的知识要点:三角函数关系式的恒等变换,利用三角函数的定义域求出函数的值域,余弦和正弦定理的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若双曲线
y2
a2
-
x2
b2
=1(a>0,b>0)的下焦点是F,点A,B分别是双曲线的两个虚轴端点,且向量
FA
FB
的夹角θ的余弦值cosθ=
1
3
,则该双曲线一条渐近线的倾斜角为(  )
A、30°B、60°
C、90°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,b∈R+,e为自然数的底数,则[
1
2
ea-ln(2b)]2+(a-b)2的最小值为(  )
A、(1-ln2)2
B、2(1-ln2)2
C、1+ln2
D、
2
(1-ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=cosxcos(x-θ)-
1
2
cosθ,0<θ<π,f(
π
3
)的值最大,则2f(
3x
2
)在x∈[0,
π
3
]上的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各三角函数值:
(1)tan(-
π
6
);
(2)sin(-390°);
(3)cos(-
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,AC与BD交于点O,则异面直线OC1与AD1所成角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+bx+c(b,c∈R).
(1)若f(-1)=f(2),且不等式x≤f(x)≤2|x-1|+1对x∈[0,2]恒成立,求函数f(x)的解析式;
(2)若c<0,且函数f(x)在[-1,1]上有两个零点,求2b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sinxcosx+3sin2x-
3
2

(1)求f(x)的最小正周期及f(
π
12
);
(2)求y=f(x)的单调增区间;
(3)当x∈[
π
3
6
]时,求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1中,△ABC是以AC为斜边的等腰直角三角形,且B1A=B1C=B1B=AC=2.
(Ⅰ)求证:平面B1AC⊥底面ABC;
(Ⅱ)求B1C与平面ABB1A1所成角的正弦值;
(Ⅲ)若E,F分别是线段A1C1,C1C的中点,问在线段B1F上是否存在点P,使得EP∥平面ABB1A1

查看答案和解析>>

同步练习册答案