精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

已知函数.

(Ⅰ)若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程;

(Ⅱ)设函数,当存在最小值时,求其最小值的解析式;

(Ⅲ)对(Ⅱ)中的,证明:当时, .

 

【答案】

(Ⅰ)a=切线的方程为

(Ⅱ)

(Ⅲ)证明见解析

【解析】本题主要考查导数与切线的关系,及导数在求函数最值,单调性等方面的应用,需要考生熟悉求导公式,并有足够的耐心去分类讨论,是一道考查综合素质的难题.

(Ⅰ)=,=(x>0),

由已知得  解得a=,x=e2,

∴ 两条曲线交点的坐标为(e2,e)   切线的斜率为

∴ 切线的方程为

(Ⅱ)由条件知

   ∴

(i)当a>0时,令解得

∴    当0 << 时,在(0,)上递减;

x>时,上递增.

∴    上的唯一极值点,且是极小值点,从而也是最小值点.

∴    最小值

(ii)当时,在(0,+∞)上递增,无最小值。

   故的最小值的解析式为

(Ⅲ)由(Ⅱ)知

,令解得.

时,,∴上递增;

时,,∴上递减.

处取得最大值

上有且只有一个极值点,所以也是的最大值.

∴当时,总有

点评:本题题目条件给的比较清晰,直接.只要抓住概念就可以很好的解决第一问,后两问主要难在需要细心并且有耐心的去分类讨论,运算,方法并不难,所以考试时做这一类题时力争拿到第一步分,后面的尽量争取.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案