精英家教网 > 高中数学 > 题目详情

【题目】定义在上的奇函数,当时, ,则关于的函数的所有零点之和为( )

A. B. C. D.

【答案】D

【解析】试题分析:fx)是连续奇函数,由以下6段分段函数组成:

1fx="-4-x" x∈-∞, -3],

2fx="x+2" x∈-3, -1],

3fx=x-1, 0,

4fx=x[0, 1,

5fx="x-2" x∈[1, 3,

6fx="4-x" x∈[3, +∞,

y=a0<a<1)与 y=fx)的第1,2,3,5,6 段分别有交点,

Fx=fx-a 的零点.

其所有零点之和为

-4-a+a-2+1-2^a+a+2+4-a=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
(1)若AB,求实数m的取值范围;
(2)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f'(x)是函数f(x)的导函数,f'(x)是函数f'(x)的导函数.对于三次函数y=f(x),若方程f'(x0)=0,则点( )即为函数y=f(x)图象的对称中心.设函数f(x)= ,则f( )+f( )+f( )+…+f( )=(
A.1008
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数f(x)的图象与x轴交于(﹣2,0),(4,0)两点,且顶点为(1,﹣ ).
(1)求f(x)的函数解析式;
(2)指出图象的开口方向、对称轴和顶点坐标;
(3)分析函数的单调性,求函数的最大值或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx﹣ 的零点所在的大致区间是(
A.(1,2)
B.(2,3)
C.(e,3)
D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x , x+2,10﹣x}(x≥0),则f(x)的最大值为(
A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1
(1)求与双曲线C1有相同焦点,且过点P(4, )的双曲线C2的标准方程;
(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当 =3时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是常数),

(1)求函数的单调区间;

(2)当时,函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤x<6},B={y|y=2x , 2≤x<3},U=R.
(1)求A∪B;
(2)求(UA)∩B.

查看答案和解析>>

同步练习册答案