【题目】已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0, f(1)=-2.
(1)求证:f(x)是奇函数;
(2)判断函数的单调性
(3)求f(x)在[-3,3]上的最大值和最小值.
科目:高中数学 来源: 题型:
【题目】已知α,β是两个不同的平面,m,n分别是平面α与平面β之外的两条不同直线,给出四个论断:
①m⊥n;②α⊥β;③n⊥β;④m⊥α.
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:____.(用序号表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为,,和的分布列如下表.
()分别求期望和.
()试对这两名工人的技术水平进行比较.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.
(1)求函数g(x)的解析式及定义域;
(2)求函数g(x)的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为常数,函数.
(1)当时,求关于的不等式的解集;
(2)当时,若函数在上存在零点,求实数的取值范围;
(3)当时,对于给定的,且,,证明:关于的方程在区间内有一个实根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a为实数).
(1)当a=4时,求函数y=g(x)在x=0处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值;
(3)如果关于x的方程g(x)=2exf(x)在区间[ ,e]上有两个不等实根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1、F2分别是双曲线 ﹣ =1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得( + ) =0(其中O为坐标原点),且| |= | |,则双曲线离心率为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com