精英家教网 > 高中数学 > 题目详情

【题目】如图1,在中,分别是边上的中点,将沿折起到的位置,使如图2

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)证明见解析;(Ⅱ)

【解析】

(Ⅰ)由已知可得,可证平面,进而有平面,即可证明结论;

(Ⅱ)由(Ⅰ)得平面平面,在正中过,垂足为,则有平面,以为坐标原点建立空间直角坐标系,确定坐标,求出平面法向量坐标,按照空间向量线面角公式,即可求解.

(Ⅰ)在图1中,分别为边中点,

所以,又因为所以

在图2

平面,又因为,所以平面

又因为平面,所以平面平面

(Ⅱ)由(Ⅰ)知平面,平面

所以平面平面,又因为平面平面

在正中过,垂足为,则中点,

平面,分别以,梯形中位线,

所在直线为轴,轴,轴建立如图坐标系,

设平面的法向量为

,则

平面的一个法向量为

设直线与平面所成角为

所以直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系.

1)设射线l的极坐标方程为,若射线l与曲线C交于AB两点,求AB的长;

2)设MN是曲线C上的两点,若∠MON,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车又称为小黄车,近年来逐渐走进了人们的生活,也成为减少空气污染,缓解城市交通压力的一种重要手段.为调查某地区居民对共享单车的使用情况,从该地区居民中按年龄用随机抽样的方式随机抽取了人进行问卷调查,得到这人对共享单车的评价得分统计填入茎叶图,如下所示(满分分):

1)找出居民问卷得分的众数和中位数;

2)请计算这位居民问卷的平均得分;

3)若在成绩为分的居民中随机抽取人,求恰有人成绩超过分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中心在原点,焦点在轴上的椭圆的一个焦点为 是椭圆上的一个点.

(1)求椭圆的标准方程;

(2)设椭圆的上、下顶点分别为 )是椭圆上异于的任意一点, 轴, 为垂足, 为线段中点,直线交直线于点, 为线段的中点,如果的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标.现从采集的血液样品中抽取500份检测指标的值,由测量结果得下侧频率分布直方图:

1)求这500份血液样品指标值的平均数和样本方差(同一组数据用该区间的中点值作代表,记作);

2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中近似为样本平均数近似为样本方差.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标的值,结果发现4名医生血液中指标的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.

附:参考数据与公式:;若,则①;②;③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为平行四边形,平面,且,点的中点.

1)求证:平面

2)在线段(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象上的动点到原点的距离的平方的最小值为.

1)求的值;

2)设,若函数有两个极值点,且,证明:.(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且存在,使得,设

)证明单调递增;

)求证:

)记,其前项和为,求证:

查看答案和解析>>

同步练习册答案