精英家教网 > 高中数学 > 题目详情

【题目】2016年5月20日,针对部分“二线城市”房价上涨过快,媒体认为国务院常务会议可能再次确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):

月收入(百元)

赞成人数

(1)试根据频率分布直方图估计这人的中位数和平均月收入;

(2)若从月收入(单位:百元)在的被调查者中随机选取人进行追踪调查,求被选取的人都不赞成的概率.

【答案】(1) 中位数为43,平均月收入为43.5;(2) .

【解析】试题分析:1根据中位数的两边频率相等,列出方程即可求出中位数;利用频率分布直方图中各小矩形的底边中点坐标对应的频率,再求和,即得平均数;(2)利用列举法求出基本事件数,根据古典概型概率公式计算对应的概率值.

试题解析:(1)设中位数为,则,解得

(2)月收入在的被调查者中,赞成的有人,设为 ,不赞成的有人,设为

从这人中随机选取人的选法有,…, 种,其中,被选取的人都不赞成的有种.设“被选取的人都不赞成”为事件,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

10

0.25

25

2

0.05

合计

1

(1)求出表中及图中的值;

(2)试估计他们参加社区服务的平均次数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列.

(1)设数列分别为等差、等比数列,若 ,求

(2)设的首项为1,各项为正整数, ,若新数列是等差数列,求数列 的前项和

(3)设是不小于2的正整数),,是否存在等差数列,使得对任意的,在之间数列的项数总是?若存在,请给出一个满足题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形, 的中点, 交于点平面.

(I)求证:

(II)若,求点到平面距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A,集合B,若,则实数的取值范围___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数yAsin(ωxφ)( )

像的一部分.为了得到这个函数的图像,只要将y=sin x(x∈R)的图像上所有的点( )

A. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的纵坐标不变.

B. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.

C. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的,纵坐标不变.

D. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线)的焦点,斜率为的直线交抛物线于 )两点,且.

(1)求该抛物线的方程;

2为坐标原点, 为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代著名数学经典.其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为( )

(注:1丈=10尺=100寸,

A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=(  )
A.-1
B.0
C.1
D.2

查看答案和解析>>

同步练习册答案