精英家教网 > 高中数学 > 题目详情
一空间几何体三视图如图所示,则该几何体的体积为        
2
根据题意可知该几何体式四棱锥,高为2,底面是直角梯形,利用锥体的体积公式可知,其几何体的体积为,故填写2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知四边形满足的中点,将沿着翻折成,使面的中点.

(Ⅰ)求四棱锥的体积;(Ⅱ)证明:∥面
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E
与直线AA1的交点。
(1)证明:(i)EF∥A1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥中,侧面⊥底面,底面是边长为的正方形,又分别是的中点.
(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段上.

(1)求证:平面BCF⊥平面ACFE;
(2)当为何值时,∥平面?证明你的结论;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=

(1)求证:AO⊥平面BCD;
(2)求E到平面ACD的距离;
(3)求异面直线AB与CD所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形中,分别是上的点,的中点.沿将梯形翻折,使平面⊥平面 (如图).


(I)当时,求证: ;
(II)若以为顶点的三棱锥的体积记为,求的最大值;
(III)当取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个几何体的三视图如右图所示,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为
A.12B.C.D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是一个几何体的三视图,则这个几何体的体积是 (    )
A.27B.30C.33D.36

查看答案和解析>>

同步练习册答案