精英家教网 > 高中数学 > 题目详情

【题目】已知一条曲线Cy轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1

1)求曲线C的方程.

2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

【答案】(1) (2)

【解析】

解:()设Pxy)是曲线C上任意一点,那么点Pxy)满足:

化简得.

(Ⅱ)设过点Mm0)(m>0)的直线l与曲线C的交点为AB

l的方程为x=ty+m,由△=16+m>0

于是

=+1+<0②

,于是不等式等价于

式,不等式等价于

对任意实数t的最小值为0,所以不等式对于一切t成立等价于

,即

由此可知,存在正数m,对于过点Mm0)且与曲线C有两个交点A,B的任一直线,都有,且m的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

(1)求椭圆的方程;

(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对满足条件3x+3y+82xyx0y0)的任意xy,(x+y2ax+y+16≥0恒成立,则实数a的取值范围是(  )

A.(﹣8]B.[8+∞C.(﹣10]D.[10+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期,长沙市公交公司推出湘行一卡通扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载湘行一卡通,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:

根据以上数据,绘制了散点图.

1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的人次;

3)推广期结束后,车队对乘客的支付方式进行统计,结果如下

支付方式

现金

乘车卡

扫码

比例

假设该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:

其中:

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.

(1)求双曲线的标准方程;

(2)若点M在双曲线上,F1,F2为左、右焦点,且|MF1|+|MF2|=6,试判别△MF1F2的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,焦点F1F2在坐标轴上,离心率为,且过点.点M(3m)在双曲线上.

(1)求双曲线的方程;

(2)求证:

(3)F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知五边形ABECD由一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,AB丄BC,AB//CD,且AB=2CD。将梯形ABCD沿着BC折起,如图2所示,且AB丄平面BEC。

(1)求证:平面ABE丄平面ADE;

(2)若AB=BC,求二面角A-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块半径为,圆心角为的扇形钢板,需要将它截成一块矩形钢板,分别按图1和图2两种方案截取(其中方案二中的矩形关于扇形的对称轴对称).

1:方案一 2:方案二

(1)求按照方案一截得的矩形钢板面积的最大值;

(2)若方案二中截得的矩形为正方形,求此正方形的面积;

(3)若要使截得的钢板面积尽可能大,应选择方案一还是方案二?请说明理由,并求矩形钢板面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定点,.若动点满足,则动点的轨迹是(

A.直线B.线段C.D.椭圆

查看答案和解析>>

同步练习册答案