【题目】(1)如图(1)所示,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,求此椭圆的离心率;
(2)如图(2)所示,双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,求此双曲线的离心率.
科目:高中数学 来源: 题型:
【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(如图)的东偏南方向300千米的海面处,并以20千米/时的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60千米,并以10千米/时的速度不断增大,问几个小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,其中为自然对数的底数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;
(Ⅲ)试探究当时,方程的解的个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|2x-1|-|x+1|.
(1)将f(x)的解析式写成分段函数的形式,并作出其图象;
(2)若a+b=1,对a,b∈(0,+∞),+≥3f(x)恒成立,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表:
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程,其中=,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某火锅店为了了解气温对营业额的影响,随机记录了该店1月份其中5天的日营业额y(单位:万元)与该地当日最低气温x(单位:℃)的数据,如下表:
(1)求y关于x的线性回归方程=x+;
(2)判断y与x之间是正相关还是负相关,若该地1月份某天的最低气温为6 ℃,用所求回归方程预测该店当日的营业额;
(3)设该地1月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,求P(3.8<X≤13.4).
附:①回归方程中,=,=﹣.
②≈3.2,≈1.8.若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ<X≤μ+2σ)=0.954 5.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第一步或最后一步,程序实施时必须相邻,请问实验顺序的编排方法共有 ( )
A. 种 B. 种 C. 种 D. 种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为边长为2的菱形,,,面面,点为棱的中点.
(1)在棱上是否存在一点,使得面,并说明理由;
(2)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com