精英家教网 > 高中数学 > 题目详情
15.已知实数x,y满足5$\sqrt{({x-3)}^{2}+{y}^{2}}$=25-3x,x+y的最大值与最小值.

分析 可将原方程化简整理,可得椭圆方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,运用参数方程,结合辅助角公式和正弦函数的值域,即可得到所求最值.

解答 解:5$\sqrt{({x-3)}^{2}+{y}^{2}}$=25-3x,
即有$\sqrt{({x-3)}^{2}+{y}^{2}}$=5-$\frac{3}{5}$x,
两边平方可得,x2-6x+9+y2=25+$\frac{9}{25}$x2-6x,
化简可得$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,
即有方程表示焦点在x轴上的椭圆,
可设x=5cosα,y=4sinα,
则x+y=5cosα+4sinα=$\sqrt{41}$sin(α+θ)(θ为辅助角),
当α+θ=2k$π+\frac{π}{2}$,k∈Z时,x+y取得最大值$\sqrt{41}$;
当α+θ=2kπ-$\frac{π}{2}$,k∈Z时,x+y取得最小值-$\sqrt{41}$.

点评 本题考查方程的化简和几何意义,考查椭圆的参数方程的应用:求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

同步练习册答案