精英家教网 > 高中数学 > 题目详情

【题目】为了了解居民的用电情况,某地供电局抽查了该市若干户居民月均用电量(单位:),并将样本数据分组为,,,,,, ,其频率分布直方图如图所示.

(1)若样本中月均用电量在的居民有户,求样本容量;

(2)求月均用电量的中位数;

(3)在月均用电量为,,,的四组居民中,用分层随机抽样法抽取户居民,则月均用电量在的居民应抽取多少户?

【答案】(1)200 (2)224 (3)4

【解析】

(1)因为,所以月均用电量在的频率为,即可求得答案;

(2)因为,设中位数为,,即可求得答案;

(3)月均用电量为,,,的频率分别为, 即可求得答案.

(1),

.

月均用电量在的频率为.

设样本容量为N,则,

.

(2),

月均用电量的中位数在内.

设中位数为,

,

解得,即中位数为.

(3)月均用电量为,,,的频率分别为

应从月均用电量在的用户中抽取(户)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一段“三段论”,其推理是这样的:对于可导函数,若,则是函数的极值点,因为函数满足,所以是函数的极值点”,结论以上推理  

A. 大前提错误B. 小前提错误C. 推理形式错误D. 没有错误

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个不透明的箱子中装有大小形状相同的5个小球,其中2个白球标号分别为3个红球标号分别为,现从箱子中随机地一次取出两个球.

(1)求取出的两个球都是白球的概率;

(2)求取出的两个球至少有一个是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

1)若,证明:函数必有局部对称点;

2)若函数在定义域内有局部对称点,求实数的取值范围;

3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点与点都在椭圆上,且的左集点为,过点的直线交椭圆两点.

1)求的方程;

2)若以为直径的圆经过点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:

年龄(岁)

支持“延迟退休年龄政策”人数

15

5

15

28

17

(I)由以上统计数据填写下面的列联表;

年龄低于45岁的人数

年龄不低于45岁的人数

总计

支持

不支持

总计

(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是( )

A. ,使得成立.

B. 命题:任意,都有,则:存在,使得

C. 命题“若,则”的逆命题为真命题.

D. 若数列是等比数列,的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:

分组(岁)

频数

合计

(1)求频率分布表中的值,并补全频率分布直方图;

(2)在抽取的这名市民中,按年龄进行分层抽样,抽取人参加国产手机用户体验问卷调查,现从这人中随机选取人各赠送精美礼品一份,设这名市民中年龄在内的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形中,点的中点,点的中点,将分别沿折起,使两点重合于,连接.

1)求证:

2)点上一点,若平面,则为何值?并说明理由.

3)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案