定义在上的函数同时满足以下条件:
①在上是增函数,在上是减函数;②的导函数是偶函数;
③在处的切线与第一、三象限的角平分线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在,使,求实数的取值范围.
科目:高中数学 来源: 题型:
(本小题满分14分)已知定义在上的函数同时满足:①对任意,都有②当时,,试解决下列问题: (Ⅰ)求在时,的表达式;(Ⅱ)若关于的方程在上有实数解,求实数的取值范围;(Ⅲ)若对任意,关于的不等式都成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
定义在上的函数同时满足以下条件:
①在上是减函数,在上是增函数;②是偶函数;
③在处的切线与直线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求函数在上的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年辽宁省五校协作体高三上学期期中考试理科数学试卷(解析版) 题型:解答题
定义在上的函数同时满足以下条件:
①在(0,1)上是减函数,在(1,+∞)上是增函数;
②是偶函数;
③在x=0处的切线与直线y=x+2垂直.
(1)求函数=的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使<,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省高三第三阶段(12月)文科考试数学试卷(解析版) 题型:解答题
(满分14分) 定义在上的函数同时满足以下条件:
①在上是减函数,在上是增函数;②是偶函数;
③在处的切线与直线垂直.
(1)求函数的解析式;
(2)设,求函数在上的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年安徽省淮北市高三4月第二次模拟理科数学试卷(解析版) 题型:解答题
定义在上的函数同时满足以下条件:
① 在上是减函数,在上是增函数;② 是偶函数;③ 在处的切线与直线垂直.
(1)求函数的解析式;
(2)设,若存在,使,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com