精英家教网 > 高中数学 > 题目详情
给出下列三个命题:
①若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数;
②若函数f(x)=2x,g(x)=log2x,则函数y=f(2x)与y=
1
2
g(x)的图象关于直线y=x对称;
③函数y=
1
2
ln
1-cosx
1+cosx
与y=lntan
x
2
是同一函数. 其中真命题的个数是(  )
A、0B、1C、2D、3
分析:根据奇函数的性质及已知中f(x)=f(2-x)恒成立,可得f(x)=f(x-4),进而由函数周期性的定义,判断出①的真假;由已知条件分别求出函数y=f(2x)与y=
1
2
g(x)的解析式,再由同底的指数函数和对数互为反函数,判断出②的真假;化简函数y=
1
2
ln
1-cosx
1+cosx
的解析式,后比照两个函数的解析式和定义域,可判断③的真假,进而得到答案.
解答:解:①正确:
∵函数f(x)为奇函数,则f(-x)=-f(x),
又∵f(x)=f(2-x),
∴f(x)=-f(x-2)=-[-f(x-2-2)=f(x-4),
∴f(x)为以4为周期的周期函数;
②正确:
∵函数f(x)=2x,g(x)=log2x,
∴y=f(2x)=4x,y=
1
2
g(x)=log4x,
即y=f(2x)与y=
1
2
g(x)互为反函数,
其图象关于直线y=x对称;
③错误:
y=
1
2
ln
1-cosx
1+cosx
=y=ln|tan
x
2
|.
故选C
点评:本题考查的知识点是命题的真假判断与应用,判断两个函数是否为同一函数,函数的周期性,其中③中易忽略(a2)
1
2
=
a2
=|a|,而错判为正确,从而错选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=sinx(cosx-sinx)+
1
2
,给出下列三个命题:
(1)函数f(x)在区间[
π
2
8
]
上是减函数;
(2)直线x=
π
8
是函数f(x)的图象的一条对称轴;
(3)函数f(x)的图象可以由函数y=
2
2
sin2x
的图象向左平移
π
4
而得到.
其中正确的命题序号是
 
.(将你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①函数y=
1
2
ln
1-cosx
1+cosx
y=lntan
x
2
是同一函数;
②若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数y=f(2x)与y=
1
2
g(x)
的图象也关于直线y=x对称;
③若奇函数f(x)对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数.
其中真命题是(  )
A、①②B、①③C、②③D、②

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β其中正确命题的序号是
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个命题:
①函数y=ax(a>0且a≠1)与函数y=logax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=lg(x+
x2+1
)
都是奇函数.
其中正确命题的序号是
①③
①③
(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2000•上海)设有不同的直线a、b和不同的平面α、β、γ,给出下列三个命题:
(1)若a∥α,b∥α,则a∥b.
(2)若a∥α,a∥β,则α∥β.
(3)若a∥γ,β∥γ,则a∥β.
其中正确的个数是(  )

查看答案和解析>>

同步练习册答案