精英家教网 > 高中数学 > 题目详情

(本小题共14分)

在如图的多面体中,⊥平面,

的中点.

(Ⅰ) 求证:平面

(Ⅱ) 求证:

(Ⅲ) 求二面角的余弦值.  

 

 

【答案】

 

解:(Ⅰ)证明:∵

.

  又∵,的中点,

    ∴

    ∴四边形是平行四边形,

    ∴ .                   ……………2分

    ∵平面平面

    ∴平面.                                 …………………4分

∴四边形为正方形,

    ∴,                                ………………………7分

平面平面,

⊥平面.                        ……………………8分

平面,

.                     ………………………9分

解法2

平面平面平面,∴

,

两两垂直.   ……………………5分

以点E为坐标原点,分别为轴建立如图的空间直角坐标系.

由已知得,(0,0,2),(2,0,0),

(2,4,0),(0,3,0),(0,2,2),

(2,2,0).      …………………………6分

,………7分

,    ………8分

.    …………………………9分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共14分)

      数列的前n项和为,点在直线

上.

   (I)求证:数列是等差数列;

   (II)若数列满足,求数列的前n项和

   (III)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题共14分)

如图,四棱锥的底面是正方形,,点E在棱PB上。

(Ⅰ)求证:平面

(Ⅱ)当EPB的中点时,求AE与平面PDB所成的角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009北京理)(本小题共14分)

已知双曲线的离心率为,右准线方程为

(Ⅰ)求双曲线的方程;

(Ⅱ)设直线是圆上动点处的切线,与双曲线

于不同的两点,证明的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,点E是PC的中点,作EFPB交PB于点F

⑴求证:PA//平面EDB

⑵求证:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题

(本小题共14分)

正方体的棱长为的交点,的中点.

(Ⅰ)求证:直线∥平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

 

查看答案和解析>>

同步练习册答案