精英家教网 > 高中数学 > 题目详情
10.已知$\vec a=(1+cosα,sinα),\vec b=(1-cosβ,sinβ),\vec c=(1,0)$,α∈(0,π),β∈(π,2π),$\vec a$与$\vec c$的夹角为θ1,$\vec b$与$\vec c$的夹角为θ2,且${θ_1}-{θ_2}=\frac{π}{3},求sin\frac{α-β}{2}$=-$\frac{1}{2}$.

分析 由α∈(0,π),可得$\frac{α}{2}$的范围.利用向量的夹角公式化简可得θ1=$\frac{α}{2}$,同理可得θ2=$\frac{β}{2}$-$\frac{π}{2}$,再利用θ12=$\frac{π}{3}$,即可得出sin$\frac{α-β}{2}$的值.

解答 解:α∈(0,π),∴$\frac{α}{2}$∈(0,$\frac{π}{2}$).
∵$\overrightarrow{a}$•$\overrightarrow{c}$=1+cosα,|$\overrightarrow{a}$|=$\sqrt{(1+cosα)^{2}+si{n}^{2}α}$=$\sqrt{2+2cosα}$,|$\overrightarrow{c}$|=1,
∴cosθ1=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{1+cosα}{\sqrt{2+2cosα}}$=$\sqrt{\frac{1+cosα}{2}}$=$\sqrt{co{s}^{2}\frac{α}{2}}$=cos$\frac{α}{2}$,
∴θ1=$\frac{α}{2}$.
∵β∈(π,2π),∴$\frac{β}{2}$∈($\frac{π}{2}$,π),
∴$\frac{β-π}{2}$∈(0,$\frac{π}{2}$).
∵$\overrightarrow{b}$•$\overrightarrow{c}$=1-cosβ,|$\overrightarrow{b}$|=$\sqrt{(1-cosβ)^{2}+si{n}^{2}β}$=$\sqrt{2-2cosβ}$,
∴cosθ2=$\frac{\overrightarrow{b}•\overrightarrow{c}}{|\overrightarrow{b}|•|\overrightarrow{c}|}$=$\frac{1-cosβ}{\sqrt{2-2cosβ}}$=$\sqrt{\frac{1-cosβ}{2}}$=sin$\frac{β}{2}$=cos($\frac{β}{2}$-$\frac{π}{2}$),
∴θ2=$\frac{β}{2}$-$\frac{π}{2}$,
∵θ12=$\frac{π}{3}$,∴$\frac{α}{2}$-($\frac{β}{2}$-$\frac{π}{2}$)=$\frac{π}{3}$,化为$\frac{α-β}{2}$=-$\frac{π}{6}$,
sin$\frac{α-β}{2}$=sin(-$\frac{π}{6}$)=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 本题考查了向量的夹角公式、数量积运算、倍角公式,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.经过点(2,1),且与直线x-y+2=0平行的直线方程是x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下面结论中,正确命题的个数为3.
①当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2
②如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.
③已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1、B1、C1、A2、B2、C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.
④点P(x0,y0)到直线y=kx+b的距离为$\frac{|k{x}_{0}+b|}{\sqrt{1+{k}_{2}}}$.
⑤直线外一点与直线上一点的距离的最小值就是点到直线的距离.
⑥若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于-$\frac{1}{k}$,且线段AB的中点在直线l上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式a2x2-ax-2<0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2},(x≤0)}\\{\sqrt{4-{x^2}}(x>0)}\end{array}}$,则$\int_{-1}^2{f(x)dx}$=$π+\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某礼堂有20排座位,第一排有18个座位,以后每排都比第一排多2个位置,这个礼堂共能做740人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“x2<1”是“0<x<1”成立的必要不充分条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂.统计调查表明:垃圾处理厂对城A的影响度与CA长度的平方成反比,比例系数为4,对城B的影响度与CB长度的平方成反比,比例系数为K.设CA=xkm,垃圾处理厂对城A和城B的影响度之和记为总影响度y;当C为弧AB的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)当x为多少时,垃圾处理厂对城A和城B的总影响度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=$\frac{2}{x}$+lnx,下列说法错误的是(  )
A.x=2是f(x)的极小值点
B.函数y=f(x)-x有且只有1个零点
C.存在正实数k,使得f(x)>kx恒成立
D.对任意两个正实数x1,x2,且x2>x1,若f(x1)=f(x2),则x1+x2>4

查看答案和解析>>

同步练习册答案