精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=x-2,若不等式|f(x+3)|>|f(x)|+m对任意实数x恒成立,则m的取值范围是(-∞,-3).

分析 |x+1|-|x-2|表示数轴上的x对应点到-1对应点的距离减去它到2对应点的距离,其最小值为-3,故有m<-3,由此求得m的取值范围.

解答 解:∵函数f(x)=x-2,不等式|f(x+3)|>|f(x)|+m对任意实数x恒成立,
∴|x+1|-|x-2|>m,
而|x+1|-|x-2|表示数轴上的x对应点到-1对应点的距离减去它到2对应点的距离,
其最小值为-3,故有m<-3,
故答案为 (-∞,-3)

点评 此题主要考查不等式恒成立的问题,绝对值不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它侧面都是侧棱长为$\sqrt{5}$的等腰三角形,试画出二面角V-AB-C的平面角,并求出它的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD=$\frac{1}{2}$BC,$\overrightarrow{BE}$=$\frac{1}{4}$$\overrightarrow{BC}$.
(1)求证:DE⊥平面PAC;
(2)若直线PE与平面PAC所成角的正弦值为$\frac{\sqrt{30}}{10}$,求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在空间直角坐标系中,一定点到三个坐标平面的距离都是2,那么该定点到原点的距离是(  )
A.$\sqrt{6}$B.$2\sqrt{3}$C.$\sqrt{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个命题中,正确的是(  )
A.奇函数的图象一定过原点B.y=x2+1(-4<x≤4)是偶函数
C.y=|x+1|-|x-1|是奇函数D.y=x+1是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求以椭圆$\frac{x^2}{8}+\frac{y^2}{5}=1$的焦点为顶点,以椭圆的顶点为焦点的双曲线方程
(2)求此双曲线方程的实半轴长,虚半轴长,离心率,渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-x3+x2+b,g(x)=alnx
(1)若f(x)的极大值为$\frac{4}{27}$,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.利用“长方体ABCD-A1B1C1D1中,四面体A1BC1D”的特点,求得四面体PMNR(其中PM=NR=$\sqrt{10}$,PN=MR=$\sqrt{13}$,MN=PR=$\sqrt{5}$)的外接球的表面积为(  )
A.14πB.16πC.13πD.15π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数$f(x)=sin(2x-\frac{π}{2}),x∈R$,则f(x)是(  )
A.最小正周期为π的奇函数B.最小正周期为$\frac{π}{2}$的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为π的偶函数

查看答案和解析>>

同步练习册答案