精英家教网 > 高中数学 > 题目详情
4.若正方体ABCD-A1B1C1D1中,E、F分别是D1C1、AB的中点,则A1B1与截面A1ECF所成的角的正切值为$\sqrt{2}$.

分析 证明直线EF垂直平面A1B1C内的两条相交直线A1C、B1C,可得EF⊥平面A1B1C,从而B1在平面A1ECF上的射影在线段A1C上,则∠B1A1C就是A1B1与平面A1ECF所成的角.然后解三角形,求A1B1与平面A1ECF所成角的正切值,即可得出结论.

解答 解:连接C1B,
∵E、F分别为C1D1与AB的中点,
∴A1F=CE.
又A1F∥CE,
∴A1FCB为平行四边形,
∴C1B∥EF.
而C1B⊥B1C,
∴EF⊥B1C.
又四边形A1ECF是菱形,∴EF⊥A1C.∴EF⊥面A1B1C.
又EF?平面A1ECF,
∴平面A1B1C⊥平面A1ECF,
∴B1在平面A1ECF上的射影在线段A1C上.
∴∠B1A1C就是A1B1与平面A1ECF所成的角.
∵A1B1⊥B1C,在Rt△A1B1C中,tan∠B1A1C=$\sqrt{2}$.
∴A1B1与平面A1ECF所成角为arctan$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查直线与平面垂直的判定,直线与平面所成的角,考查学生空间想象能力,逻辑思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)={x^2}+lg(x+\sqrt{{x^2}+1})$,若f(a)=M,则f(-a)等于(  )
A.2a2-MB.M-2a2C.2M-a2D.a2-2M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a>b>0,0<c<1,则(  )
A.logac<logbcB.ca>cbC.ac<abD.logca<logcb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P所在轨迹的极坐标方程为ρ=2cosθ,点Q所在轨迹的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4+2t}\end{array}\right.$(t为参数),则|PQ|的最小值是(  )
A.2B.$\frac{4\sqrt{5}}{5}$+1C.1D.$\frac{4\sqrt{5}}{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.空气污染,又称为大气污染,当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量
状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为
100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染; 2015年1月某日某省x个监测0点数据统计如下:
空气污染指数
(单位:μg/m3
[0,50](50,100](100,150](150,200]
监测点个数1540y15
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)统计部门从该省空气质量“良好”和“轻度污染”的两类监测点中采用分层抽样的方式抽取了7个监测点,省环保部门再从中随机选取3个监测点进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=3+cost}\\{y=sint}\end{array}\right.$,0≤t$≤\frac{π}{2}$,C2的极坐标方程为3ρsinθ-ρcosθ-1=0,则C1和C2的公共点的个数为0个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x3-3x-a,当x∈[0,3]上时,m≤f(x)≤n恒成立,则n-m的最小值为(  )
A.2B.4C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-ax+3在区间(-∞,2)上是减函数,在区间[2,+∞)上是增函数.
(1)求a的值;
(2)求f(x)在区间[0,3]上的值域;
(3)求f(x)在区间[0,m](m>0)上的最大值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)满足条件:对于函数f(x)的零点x0,当$\left\{\begin{array}{l}(a-{x_0})(b-{x_0})<0\\(a-b)[f(a)-f(b)]<0\end{array}\right.$成立时,恒有$ab<x_0^2$或a+b<2x0,则称函数f(x)为“好函数”.则下列三个函数:①f(x)=|lgx|,②f(x)=|cosx|(0≤x≤π),③f(x)=|2x-2|,为“好函数”的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案