精英家教网 > 高中数学 > 题目详情
6.已知a∈($\frac{π}{2}$,π),sina=$\frac{\sqrt{5}}{5}$.
(Ⅰ)求tan($\frac{π}{4}$+2a)的值;
(Ⅱ)求cos($\frac{5π}{6}$-2a)的值.

分析 (Ⅰ)由已知条件求出cosα的值,再求出tanα和tan2α的值,根据诱导公式进一步求出tan($\frac{π}{4}$+2a)的值;
(Ⅱ)由sinα和cosα的值,求出sin2α和cos2α的值,根据诱导公式进一步求出cos($\frac{5π}{6}$-2a)的值.

解答 解:(Ⅰ)∵sina=$\frac{\sqrt{5}}{5}$,a∈($\frac{π}{2}$,π),
∴cosα=$-\sqrt{1-si{n}^{2}α}=-\sqrt{1-(\frac{\sqrt{5}}{5})^{2}}=-\frac{2\sqrt{5}}{5}$.
∴$tanα=\frac{sinα}{cosα}=-\frac{\frac{\sqrt{5}}{5}}{\frac{2\sqrt{5}}{5}}=-\frac{1}{2}$.
则$tan2α=\frac{2tanα}{1-ta{n}^{2}α}=\frac{2×(-\frac{1}{2})}{1-(-\frac{1}{2})^{2}}=-\frac{4}{3}$
∴tan($\frac{π}{4}$+2a)=$\frac{tan\frac{π}{4}+tan2α}{1-tan\frac{π}{4}tan2α}$=$\frac{1-\frac{4}{3}}{1+\frac{4}{3}}=-\frac{1}{7}$;
(Ⅱ)由(Ⅰ)知$cosα=-\frac{2\sqrt{5}}{5}$,
$sin2α=2sinαcosα=2×\frac{\sqrt{5}}{5}×(-\frac{2\sqrt{5}}{5})$=$-\frac{4}{5}$,
$cos2α=1-2si{n}^{2}α=1-2×(\frac{\sqrt{5}}{5})^{2}=\frac{3}{5}$,
cos($\frac{5π}{6}$-2a)=$cos\frac{5π}{6}cos2α+sin\frac{5π}{6}sin2α$
=$-\frac{\sqrt{3}}{2}×\frac{3}{5}+\frac{1}{2}×(-\frac{4}{5})=-\frac{3\sqrt{3}+4}{10}$.

点评 本题考查了三角函数的化简求值,考查了同角的平方关系、诱导公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知a为正的常数,函数g(x)=|x-a|+$\frac{lnx}{x}$,x∈[1,e],则g(x)的最小值为g(x)min=$\left\{\begin{array}{l}{1-a,0<a≤1}\\{\frac{lna}{a},1<a≤e}\\{a-e+\frac{1}{e},a>e}\end{array}\right.$(e≈2.71828为自然对数的底数,写成分段函数形式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的参数方程为:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数),曲线C的参数方程为:$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}$(t为参数),顶点为O.
(1)求直线的倾斜角和斜率;
(2)证明直线l与曲线C相交于两点;
(3)设(2)中的交点为A,B,求三角形AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数既是奇函数,又在(0,1)上是增函数的是(  )
A.y=-x3B.y=sinxC.y=log3xD.y=3x+3-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.△ABC中,AB=2,AC=3,∠B=30°,则cosC=(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{3}$C.-$\frac{2\sqrt{2}}{3}$D.±$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{{x}^{2}}{2{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1和双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1有公共焦点,则双曲线的渐近线方程是(  )
A.x=±$\frac{\sqrt{15}}{2}$yB.y=±$\frac{\sqrt{15}}{2}$xC.x=±$\frac{\sqrt{2}}{2}$yD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:
气温16118-3
用电量25333864
由表中数据得到线性回归方程$\stackrel{∧}{y}$=-2x+a,当气温为-5℃时,预测用电量约为66°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC的内角A,B,C所对的边长分别为a,b,c,若acosC+ccosA=2bsinA,则A的值为(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个物体的运动方程为s=(2t+3)2,其中s的单位是米,t的单位是秒,那么物体在第2秒末的瞬时速度是(  )
A.20米/秒B.28米/秒C.14米/秒D.16米/秒

查看答案和解析>>

同步练习册答案