【题目】如图所示,椭圆离心率为,、是椭圆C的短轴端点,且到焦点的距离为,点M在椭圆C上运动,且点M不与、重合,点N满足.
(1)求椭圆C的方程;
(2)求四边形面积的最大值.
科目:高中数学 来源: 题型:
【题目】某学习合作小组学习了祖暅原理:“幂势既同,则积不容异”,意思是夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.利用祖暅原理研究椭圆绕轴旋转一周所得到的椭球体的体积,方法如下:取一个底面圆半径为高为的圆柱,从圆柱中挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体和半椭球体放在同一平面上,那么这两个几何体也就夹在两个平行平面之间了,现在用一平行于平面的任意一个平面去截这两个几何体,则截面分别是圆面和圆环面,经研究,圆面面积和圆环面面积相等,由此得到椭球体的体积是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在湖南师大附中的校园歌手大赛决赛中,有6位参赛选手(1号至6号)登台演出,由现场的100位同学投票选出最受欢迎的歌手,各位同学须彼此独立地在投票器上选出3位侯选人,其中甲同学是1号选手的同班同学,必选1号,另在2号至6号选手中随机选2名;乙同学不欣赏2号选手,必不选2号,在其他5位选手中随机选出3名;丙同学对6位选手的演唱没有偏爱,因此在1号至6号选手中随机选出3名.
(1)求同学甲选中3号且同学乙未选中3号选手的概率;
(2)设3号选手得到甲、乙、丙三位同学的票数之和为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:, 过点的直线:与椭圆交于M、N两点(M点在N点的上方),与轴交于点E.
(1)当且时,求点M、N的坐标;
(2)当时,设,,求证:为定值,并求出该值;
(3)当时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com