【题目】如图,已知等边中, , 分别为, 边的中点, 为的中点, 为边上一点,且,将沿折到的位置,使平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(I)证明见解析;(II)
【解析】试题分析:(1)首先根据已知条件可证出,再由面面垂直的性质定理并结合平面平面可得出平面,然后再由和可证得,再在正中易证得平面,最后由面面垂直的判定定理即可得出所证的结论;(2)首先建立空间直角坐标系,并正确写出各点的空间坐标,然后由法向量的定义分别求出平面和平面的法向量,最后由公式即可计算出所求的角的大小.
试题解析:(Ⅰ)因为, 为等边的, 边的中点,
所以是等边三角形,且.因为是的中点,所以.
又由于平面平面, 平面,所以平面.
又平面,所以.因为,所以,所以.
在正中知,所以.而,所以平面.
又因为平面,所以平面平面.
(Ⅱ)设等边的边长为4,取中点,连接,由题设知,由(Ⅰ)知平面,又平面,所以,如图建立空间直角坐标系,则, , , , .
设平面的一个法向量为,则
由得令,则.
平面的一个法向量为,所以,
显然二面角是锐角.所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ex﹣ax﹣2(x∈R,a∈R).
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线l作垂线,垂足分别为M1、N1.
(1)求;
(2)记△FMM1、△FM1N1、△FNN1的面积分别为、、,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和的焦点分别为, 交于O,A两点(O为坐标原点),且
(Ⅰ)求抛物线的方程;
(Ⅱ)过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,Tn为{bn}的前n项和,求T2n .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= x2+alnx(a<0).
(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为 ,求实数a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大小;
(2)若c=,a2+b2=10,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com