精英家教网 > 高中数学 > 题目详情

(12分)圆、椭圆、双曲线都有对称中心,统称为有心圆锥曲线,它们统一的标准方程为.圆的很多优美性质可以类比推广到有心圆锥曲线中,如圆的“垂径定理”的逆定理:圆的平分弦(不是直径)的直径垂直于弦. 类比推广到有心圆锥曲线:已知直线与曲线交于两点,的中点为,若直线(为坐标原点)的斜率都存在,则.这个性质称为有心圆锥曲线的“垂径定理”.

(Ⅰ)证明有心圆锥曲线的“垂径定理”;

(Ⅱ)利用有心圆锥曲线的“垂径定理”解答下列问题:

①     过点作直线与椭圆交于两点,求的中点的轨迹的方程;

②     过点作直线与有心圆锥曲线交于两点,是否存在这样的直线使点为线段的中点?若存在,求直线的方程;若不存在,说明理由.

解析:(Ⅰ)证明 设

相减得  

注意到  

有        

即                        …………………………………………5分

(Ⅱ)①设

由垂径定理,

即       

化简得  

轴平行时,的坐标也满足方程.

故所求的中点的轨迹的方程为

…………………………………………8分

②     假设过点P(1,1)作直线与有心圆锥曲线交于两点,且P为的中点,则

         

由于 

直线,即,代入曲线的方程得

         即   

         由  得.

故当时,存在这样的直线,其直线方程为

时,这样的直线不存在.        ………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中的推广(不必证明):
过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条连线的斜率之积为定值-
b2
a2
过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条连线的斜率之积为定值-
b2
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中的推广(不必证明):
______

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)有对称中心的曲线叫有心曲线,如圆、椭圆、双曲线都是有心曲线,过有心曲线的中心的弦叫有心曲线的直径,有心曲线有许多类似的优美性质。

(1)定理:过圆上异于直径两端点的任意一点与直径两端点的连线斜率之积为定值.试写出该定理在椭圆中的类似结论;

(2)定理:圆的两条互相垂直的直径称为共轭直径,且这两条共轭直径与圆相交得到的四边形的面积为定值.在椭圆中两条斜率之积为的直径称为共轭直径,试探究椭圆中两条共轭直径与椭圆相交得到的四边形的面积的类似结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙市长郡中学高二(上)期中数学试卷(解析版) 题型:填空题

有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆中的推广(不必证明):
   

查看答案和解析>>

同步练习册答案