精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,DAB上一点,且平面.

1)求证:

2)若四边形是矩形,且平面平面ABC,直线与平面ABC所成角的正切值等于2,求三楼柱的体积.

【答案】1)见详解;(2

【解析】

1)连接于点,连接,利用线面平行的性质定理可得,从而可得的中点,进而可证出

2)利用面面垂直的性质定理可得平面,从而可得三棱柱为直三棱柱,在中,根据等腰三角形的性质可得,进而可得棱柱的高为,利用柱体的体积公式即可求解.

1)连接于点,连接,如图:

平面,且平面平面,

所以,由的中点,

所以的中点,

2)由四边形是矩形,且平面平面ABC

所以平面,即三棱柱为直三棱柱,

中,

所以

因为直线与平面ABC所成角的正切值等于2

中,,所以.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面是菱形,.

(Ⅰ)求证:

(Ⅱ)若平面平面,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值与销售单价之间的关系,经统计得到如下数据:

等级代码数值

38

48

58

68

78

88

销售单价(元

16.8

18.8

20.8

22.8

24

25.8

(1)已知销售单价与等级代码数值之间存在线性相关关系,求关于的线性回归方程(系数精确到0.1);

(2)若莫斯科某餐厅销售的中国小龙虾的等级代码数值为98请估计该等级的中国小龙虾销售单价为多少元?

参考公式:对一组数据,,····,其回归直线的斜率和截距最小二乘估计分别为:,.

参考数据:,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设自然数求证:全体不大于n的合数可重新排列(不一定按原来的大小顺序排列),使得每三个依次相邻的数都有大于1的公因数(例如,当排列就满足要求)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数是奇函数,的定义域为.当时, .(e为自然对数的底数).

(1)若函数在区间上存在极值点,求实数的取值范围;

(2)如果当x≥1时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,右顶点为,设离心率为,且满足,其中为坐标原点.

(1)求椭圆的方程;

(2)过点(0,1)的直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植物感染病毒极易导致死亡,某生物研究所为此推出了一种抗病毒的制剂,现对20株感染了病毒的该植株样本进行喷雾试验测试药效.测试结果分植株死亡植株存活两个结果进行统计;并对植株吸收制剂的量(单位:mg)进行统计.规定:植株吸收在6mg(包括6mg)以上为足量,否则为不足量”.现对该20株植株样本进行统计,其中植株存活13株,对制剂吸收量统计得下表.已知植株存活制剂吸收不足量的植株共1.

编号

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

吸收量(mg)

6

8

3

8

9

5

6

6

2

7

7

5

10

6

7

8

8

4

6

9

1)完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为植株的存活制剂吸收足量有关?

吸收足量

吸收不足量

合计

植株存活

1

植株死亡

合计

20

2)①若在该样本吸收不足量的植株中随机抽取3株,记植株死亡的数量,求得分布列和期望

②将频率视为概率,现在对已知某块种植了1000株并感染了病毒的该植物试验田里进行该药品喷雾试验,设植株存活吸收足量的数量为随机变量,求.

参考数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆C的右焦点为圆心,以椭圆的半长轴长为半径的圆相切.

1)求椭圆C的方程;

2)设P为椭圆C上一点,若过点的直线l与椭圆C相交于不同的两点ST,满足O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数时取得极值,求实数的值;

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案