精英家教网 > 高中数学 > 题目详情
定义在R上的函数y=f(x),f(0)≠0.当x>0时,f(x)>1,且对任意的a、b∈R,都有f(a+b)=f(a)•f(b).
(1)证明:f(x)在R上是增函数;
(2)若f(x)•f(1-2x)>1,求x的取值范围.
考点:抽象函数及其应用,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)利用赋值法,先求出f(0),再利用定义判断函数的单调性,
(2)由函数的单调性得出不等式,解得即可.
解答: 解:∵设x=0,y=1得:f(0+1)=f(0)•f(1),
即f(1)=f(0)•f(1)
∵f(1)>1
∴f(0)=1
对x1,x2∈R,x1<x2,有x2-x1>0
∴f(x2)=f(x1+x2-x1)=f(x1)•f(x2-x1)中有f(x2-x1)>1,
由已知可,得当x1>0时,f(x1)>1>0
当x1=0时,f(x1)=1>0
当x1<0时,f(x1)•f(-x1)=f(x1-x1)=f(0)=1
又∵f(-x1)>1
∴0<f(x1)<1
故对于一切x1∈R,有f(x1)>0
∴f(x2)=f(x1)•f(x2-x1)>f(x1),
∴函数f(x)为增函数.
(2)f(x)•f(1-2x)=f(x+1-2x)=f(1-x),
∵f(x)•f(1-2x)>1=f(0),
∴f(1-x)>f(0)
∴1-x>0
解得x<1,
故原不等式的解集为(-∞,1)
点评:本题主要考查了抽象函数表达式反映函数性质及抽象函数表达式的应用,函数单调性的定义及其证明,利用函数性质和函数的单调性解不等式的方法,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A={x|x=5k+3,k∈N*},B={x|x=7k+2,k∈N*},则A∩B中的最小元素为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数的奇偶性f﹙x﹚=0,|x|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=-4+cost
y=3+sint
(t为参数),C2
x=8cosθ
y=3sinθ
(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
(t为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
cos(2x-φ)的图象过点(
π
6
1
2
),
①求φ的值;
②将函数y=f(x)的图象上各点的横坐标缩短到原来的
1
2
,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在(0,
π
4
)上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足|x|+|y|≤1,求:
(1)z=x+2y的最大值;
(2)z=x2+y2-4x+4y的最小值;
(3)z=
2y+1
x-5
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,角A,B,C所对的边为a,b,c且
bcosC
acosA
+
ccosB
acosA
=2.
(Ⅰ)求A;
(Ⅱ)若a=2,求三角形ABC周长l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
8-2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

若y=f(x)在定义域上为增函数,试判断y=-f(x),y=f(-x)f(
1
x
)的单调性.

查看答案和解析>>

同步练习册答案