精英家教网 > 高中数学 > 题目详情

【题目】已知

(1)若上恒成立,求实数的取值范围;

(2)证明:当时,

【答案】(1) (2)证明见解析

【解析】

(1)求导,讨论与1 的大小确定的正负,进而确定的最值即可证明

(2)由(1)取,得 ,要证,只需证,构造函数,证明即可证明

(1)法一:由题意

,即时,,则单调递增,

,则单调递增,故,满足题意;

,即时,存在,使得,且当时,,则上单调递减,则,则单调递减,此时,舍去;

,即时,,则上单调递减,则,则单调递减, ,舍去;

法二:由题知,且

要使得上恒成立,则必须满足,即

时,,则单调递增,则

单调递增,故,满足题意;

时,存在时,,则上单调递减,则,则单调递减,此时,舍去;

(2)证明:由(1)知,当时,.取

由(1),则,故

要证,只需证

,则

时,,则上单调递增,有

单调递增,故

,即有,得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,函数的导函数.

1)若,都有成立(其中),求的值;

2)证明:当时,

3)设当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,说法正确的个数是(

1)若pq为真命题,则pq均为真命题

2)命题x0R0”的否定是xR2x0”

3x[12]x2恒成立的充分条件

4)在ABC中,“sinAsinB的必要不充分条件

5)命题x21,则x1”的否命题为:x21,则x≠1”

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的(  )

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其图象与轴交于两点,且.

1)求的取值范围;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为.以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程和曲线的直角坐标方程;

2)若曲线上的点到直线l的最大距离为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,过的直线交于两点,点的坐标为.

1)若点也是顶点为原点的抛物线的焦点,求抛物线的方程;

2)当轴垂直时,求直线的方程;

3)设为坐标原点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)设,当时,对任意,存在,使,求实数的取值范围.

查看答案和解析>>

同步练习册答案