精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABCA1B1C1中,△ABC是边长为6的等边三角形,DE分别为AA1BC的中点.

1)证明:AE//平面BDC1

2)若异面直线BC1AC所成角的余弦值为.求DE与平面BDC1所成角的正弦值.

【答案】1)详见解析;(2

【解析】

1)先证明四边形ADFE为平行四边形,则AEDF,由此即可得证;

2)以点E为坐标原点,建立空间直角坐标系,设AA12tt0),根据已知条件可求得,进而求得平面BDC1的法向量以及直线DE的方向向量,再利用向量公式求解.

1)证明:取BC1的中点F,连接DFEF

EBC中点,

又∵DAA1的中点,

∴四边形ADFE为平行四边形,

AEDF

AE平面BDC1DF平面BDC1

AE∥平面BDC1

2)由(1)及题设可知,BCEAEF两两互相垂直,则以点E为坐标原点,ECEA

EF所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,

AA12tt0),则

所以

解得

设平面BDC1的法向量为

,得

,则

所以

DE与平面BDC1所成角为

DE与平面BDC1所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

试销价

9

11

10

12

13

14

产品销量

40

32

29

35

44

(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量

(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.

参考公式:

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于AB两点,已知AB的横坐标分别为

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,且经过点.

1)求椭圆的方程;

2)直线的斜率为,且与椭圆相交于两点(异于点),过的角平分线交椭圆于另一点.

i)证明:直线与坐标轴平行;

ii)当时,求四边形的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),其中

(Ⅰ)若,求的单调区间;

(Ⅱ)求零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点.

1)若线段的中点为,求直线的方程;

2)若的斜率为,且过椭圆的左焦点的垂直平分线与轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某人承包了一块矩形土地用来种植草莓,其中mm.现规划建造如图所示的半圆柱型塑料薄膜大棚个,每个半圆柱型大棚的两半圆形底面与侧面都需蒙上塑料薄膜(接头处忽略不计),塑料薄膜的价格为每平方米元;另外,还需在每个大棚之间留下m宽的空地用于建造排水沟与行走小路(如图中m),这部分建设造价为每平方米.

1)当时,求蒙一个大棚所需塑料薄膜的面积;(本小题结果保留

2)试确定大棚的个数,使得上述两项费用的和最低?(本小题计算中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线为,求实教ab的值.

2)若,且对一切正实数x值成立,求实数b的取值范围.

3)若,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面的问题中,并解决该问题.

已知的内角,,的对边分别为,,______________,,,求的面积.

查看答案和解析>>

同步练习册答案