【题目】已知函数(其中a为常数).
(1)当a=1时,求f(x)在上的值域;
(2)若当x∈[0,1]时,不等式恒成立,求实数a的取值范围;
(3)设,是否存在正数a,使得对于区间上的任意三个实数m,n,p,都存在以f(g(m)),f(g(n)),f(g(p))为边长的三角形?若存在,试求出这样的a的取值范围;若不存在,请说明理由.
【答案】(1)[2,] (2)-<a<(3)(-,-)∪(,)
【解析】
(1)当a=1时,f(x)=x+,结合对勾函数的图象和性质,可得f(x)在[,2]上的值域;
(2)若不等式f(2x)<2x++4在[0,1]上恒成立,即a<-2(2x)2+1+2x在[0,1]上恒成立,令t=2x,则t∈[1,2],y=-2t2+t+1,结合二次函数的图象和性质,求出函数的最小值,可得实数a的取值范围;
(3)换元,原问题等价于求实数a的范围,使得函数在给定的区间上,恒有2ymin>ymax
解:(1)函数,
当a=1时,f(x)=x+,导数为f′(x)=1-=,
f(x)在[,1]上为减函数,在[1,2]上为增函数,
∴当x=,或x=2时,函数最最大值,当x=1时,函数取最小值2,
故f(x)在[,2]上的值域为[2,];
(2)若不等式f(2x)<2x++4在[0,1]上恒成立,
即2x+<2x++4在[0,1]上恒成立,即a2<1+42x在[0,1]上恒成立,
1+42x在[0,1]递增,可得最小值为1+4=5,即a2<5,解得-<a<;
(3)设t=g(x)==-1+在x∈[0,]递减,可得t∈[,1],则y=t+,
原问题转化为求实数a的取值范围,使得y在区间[,1]上,恒有2ymin>ymax.
讨论:①当0<a2≤时,y=t+在[,1]上递增,∴ymin=3a2+,ymax=a2+1,
由2ymin>ymax得a2>,∴<a≤;或-≤a<-;
②当<a2≤时,y=t+在[,|a]上单调递减,在[|a|,1]上单调递增,
∴ymin=2|a|,ymax=max{3a2+,a2+1}=a2+1,
由2ymin>ymax得2-<|a|<2+,∴<|a|≤;
③当<|a|<1时,y=t+在[,|a|]上单调递减,在[|a|,1]上单调递增,
∴ymin=2|a|,ymax=max{3a2+,a2+1}=3a2+,
由2ymin>ymax得<|a|<,∴<|a|<1;
④当|a|≥1时,y=t+在[,1]上单调递减,∴ymin=a2+1,ymax=3a2+,
由2ymin>ymax得a2<,∴1≤a2<;
综上,a的取值范围是(-,-)∪(,).
科目:高中数学 来源: 题型:
【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=3,an+1=+2(n∈N*).
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)根据计算结果猜想{an}的通项公式,并用数学归纳法加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义域为R的偶函数,f(-1)=3,且当x≥0时,f(x)=2x+x+c(c是常数),则不等式f(x-1)<6的解集是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x+ax2+b·ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系内从点P1(0,0)作x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;…;Pn,Qn,记点的坐标为(,0)(k=1,2,…,n).
(1)试求与的关系(k=2,…,n);
(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.
(1)证明平面ABEF⊥平面EFDC;
(2)求二面角E﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )
A.35
B.20
C.18
D.9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com