精英家教网 > 高中数学 > 题目详情
7.抛物线y2=4x上的一点A到焦点的距离为5,则点A到x轴的距离是4.

分析 由抛物线方程求出抛物线的焦点坐标和准线方程,结合抛物线的定义得答案.

解答 解:抛物线y2=4x的焦点坐标为F(1,0),准线方程为x=-1,
∵抛物线y2=4x上的一点A到焦点的距离为5,
由抛物线定义可知,点A到准线x=-1的距离是5,
则点A到x轴的距离是4.
故答案为:4.

点评 本题考查抛物线的定义,考查了抛物线的简单性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知复数z1=1+i,z2=1-i,若z=$\frac{{z}_{1}}{{z}_{2}}$,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x2-ax+a(x∈R),在定义域内有且只有一个零点,存在0<x1<x2,使得不等式f(x1)>f(x2)成立. 若n∈N*,f(n)是数列{an}的前n项和.设各项均不为零的数列{cn}中,所有满足ck•ck+1<0的正整数k的个数称为这个数列{cn}的变号数,令cn=1-$\frac{4}{{a}_{n}}$,则数列{cn}的变号数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知U=R,A={x||x-3|<2},B={x|(x-2)(x-4)>0},求
(1)A∩B
(2)CU(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设f(n)表示前n年的纯利润总和(f(n)前n年总收入前n年的总支出-投资额72万元)
(1)该厂从第几年开始盈利?
(2)写出年平均纯利润的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直角梯形ABCD如图1所示,CD=2,AB=4,AD=2,线段AB上有一点P,过点P作AB的垂线交l,当点P从点A运动到点B时,记AP=x,l截直角梯形的左边部分面积为S(x),
(1)试写出S(x)关于x的函数,并在图2中画出函数图象.
(2)当点P位于何处时,S(x)为直角梯形ABCD面积的$\frac{3}{4}$?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0
(2)lg52+$\frac{2}{3}$lg8+lg5lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)在x=0处连续.下列结论不正确的是(  )
A.若$\underset{lim}{x→0}$$\frac{f(x)+f(-x)}{x}$存在,则f′(0)存在B.若$\underset{lim}{x→0}$$\frac{f(x)+f(-x)}{x}$存在,则f(0)=0
C.若$\underset{lim}{x→0}$$\frac{f(x)}{x}$存在,则f(0)=0D.若$\underset{lim}{x→0}$$\frac{f(x)}{x}$存在,则f′(0)存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列抽样方法是简单随机抽样的是④.
①50个零件中一次性抽取5个做质量检验;
②从50个零件中有放回地抽取5个做质量检验;
③从实数集中随意抽取10个数分析奇偶性;
④运动员从8个跑道中随机地抽取一个跑道.

查看答案和解析>>

同步练习册答案