在空间几何体中,平面,平面平面,,.
(I)求证:平面;
(II)如果平面,求证:.
(Ⅰ)详见解析;(Ⅱ)详见解析.
解析试题分析:(Ⅰ)利用平面平面得到平面内一条直线与平面垂直,然后利用直线与平面垂直的性质定理得到该直线与平行,进而证明平面;(Ⅱ)利用已知条件确定三棱锥和的高与底面积,及三棱锥和中相应的边长之间的等量关系,然后将三棱锥和的体积用对应的边长进行表示,两者进行比较从而得出.
试题解析:(I)如图,取中点,连,
由得,
∵平面⊥平面, ∴平面, 2分
又∵⊥平面,∴∥, 4分
又∵平面,∴∥平面. 6分
(Ⅱ)连接,则.
∵平面⊥平面,面∩面,∴⊥平面.
又∵,∴∥. 8分
又由(Ⅰ)知,四边形是矩形,
∴,. 10分
∴,
而,则. 12分
考点:直线与平面平行、几何体的体积
科目:高中数学 来源: 题型:解答题
已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1= ,求三棱锥B1-A1DC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)按照画三视图的要求画出该多面体的俯视图;
(2)在所给直观图中连接BC′,求证:BC′∥面EFG.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知轴对称平面五边形(如图1),为对称轴,,,,将此图形沿折叠成直二面角,连接、得到几何体(如图2).
(Ⅰ)证明:∥平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求出该几何体的体积;
(2)若是的中点,求证:∥平面;
(3)求证:平面⊥平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱ABC-ABC的侧面AACC与底面ABC垂直,AB=BC=CA=4,且AA⊥AC,AA=AC.
(Ⅰ)证明:AC⊥BA;
(Ⅱ)求侧面AABB与底面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
图1是一个正方体的表面展开图,MN和PB是两条面对角线,请在图2的正方体中将MN和PB画出来,并就这个正方体解决下列问题
(1) 求证:MN//平面PBD; (2)求证:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com