精英家教网 > 高中数学 > 题目详情

【题目】设函数

(Ⅰ)若当取得极值,求a的值及的单调区间;

(Ⅱ)若存在两个极值点,证明:

【答案】(Ⅰ).单调增区间为,单调减区间为.(Ⅱ)见解析

【解析】

1)求导数,由题意可知为方程的根,求解值,再令导数,分别求解单调增区间与单调减区间,即可.

2)函数存在两个极值点,等价于方程上有两个不等实根,则,即可,再将变形整理为;若证明不等式,则需证明,由变形为,不妨设,即证,令,则,求函数的取值范围,即可证明.

(Ⅰ)

时,取得极值,

的单调增区间为,单调减区间为

(Ⅱ)

存在两个极值点,

∴方程上有两个不等实根

∴所证不等式等价于

即变形为

不妨设,即变形为

变形为

上递增.

成立,

成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】24届冬奥会将于202224日至222日在北京市和河北省张家口市联合举行,这是中国历史上第一次举办冬季奥运会.为了宣传冬奥会,让更多的人了解、喜爱冰雪项目,某校高三年级举办了冬奥会知识竞赛(总分100分),并随机抽取了名中学生的成绩,绘制成如图所示的频率分布直方图.已知前三组的频率成等差数列,第一组和第五组的频率相同.

)求实数的值,并估计这名中学生的成绩平均值;(同一组中的数据用该组区间的中点值作代表)

)已知抽取的名中学生中,男女生人数相等,男生喜欢花样滑冰的人数占男生人数的,女生喜欢花样滑冰项的人数占女生人数的,且有95%的把握认为中学生喜欢花样滑冰与性别有关,求的最小值.

参考数据及公式如下:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二某班共有45人,学号依次为12345,现按学号用系统抽样的办法抽取一个容量为5的样本,已知学号为62433的同学在样本中,那么样本中还有两个同学的学号应为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了201950位农民的年收入并制成如下频率分布直方图:

1)根据频率分布直方图,估计50位农民的平均年收入(单位:千元);(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得=6.92,利用该正态分布,求:

①在扶贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?

②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附参考数据:,若随机变量X服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线,经过点的直线与该双曲线交于两点.

1)若轴垂直,且,求的值;

2)若,且的横坐标之和为,证明:.

3)设直线轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,,已知是以为底边,且边平行于轴的等腰三角形.

1)求动点的轨迹的方程;

2)已知直线轴于点,且与曲线相切于点,点在曲线上,且直线轴,点关于点的对称点为点,试判断点三点是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的四棱锥中,底面为矩形,平面MN分别是的中点.

1)求证:平面

2)若直线与平面所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.

(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;

(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线相切于点,点关于轴对称.

1)求抛物线的方程及点的坐标;

2)设轴上两个不同的动点,且满足,直线与抛物线的另一个交点分别为试判断直线与直线的位置关系,并说明理由.如果相交,求出的交点的坐标.

查看答案和解析>>

同步练习册答案