A£® | $\frac{\sqrt{2}}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{\sqrt{3}}{3}$ | D£® | $\frac{1}{2}$ |
·ÖÎö ÓÉÌâÒâ¿ÉÖª£ºË«ÇúÏß·½³ÌΪ£º$\frac{{x}^{2}}{{c}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾0£¬b£¾0£©£¬½¥½üÏß·½³ÌΪy=¡À$\frac{b}{c}$x£¬Ô²ÐÄΪ£¨a£¬0£©£¬°ë¾¶Îªc£¬¼´d=$\frac{ØabØ}{\sqrt{{b}^{2}+{c}^{2}}}$=b£¬¼´b=c£¬a=$\sqrt{2}$c£¬ÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬½¹µãÔÚxÖáÉÏ£¬a2=b2+c2£¬
Ë«ÇúÏßÒÔÍÖÔ²CµÄ½¹µãΪ¶¥µã£¬¶¥µãΪ½¹µã£¬
Ë«ÇúÏß·½³ÌΪ£º$\frac{{x}^{2}}{{c}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾0£¬b£¾0£©£¬½¥½üÏß·½³ÌΪy=¡À$\frac{b}{c}$x£¬
Ô²M£º£¨x-a£©2+y2=c2£¬Ô²ÐÄΪ£¨a£¬0£©£¬°ë¾¶Îªc£¬
Ë«ÇúÏßµÄÁ½Ìõ½¥½üÏ߶¼ÓëÔ²MÏàÇУ¬ÔòÔ²Ðĵ½½¥½üÏߵľàÀëd=c£¬
¼´d=$\frac{ØabØ}{\sqrt{{b}^{2}+{c}^{2}}}$=b£¬¼´b=c£¬a=$\sqrt{2}$c£¬
ÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬
¹ÊÑ¡A£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éË«ÇúÏߵĽ¥½üÏß·½³Ì£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ʵÑé²Ù×÷ | |||||
²»ºÏ¸ñ | ºÏ¸ñ | Á¼ºÃ | ÓÅÐã | ||
Ìå ÄÜ ²â ÊÔ | ²»ºÏ¸ñ | 0 | 0 | 1 | 1 |
ºÏ¸ñ | 0 | 2 | 1 | b | |
Á¼ºÃ | 1 | a | 2 | 4 | |
ÓÅÐã | 1 | 2 | 3 | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 6¦Ð | B£® | 8¦Ð | C£® | 10¦Ð | D£® | 11¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com