精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1 ( 当x为有理数时)
0(当x为无理数时)
,给出下列关于f(x)的性质:
①f(x)是周期函数,3是它的一个周期;②f(x)是偶函数;③方程f(x)=cosx有有理根;④方程f[f(x)]=f(x)与方程f(x)=1的解集相同
正确的个数为(  )
A、1个B、2个C、3个D、4个
分析:本题综合的考查了函数的性质,我们可以根据周期函数、函数奇偶性结合方程思想,特殊值代入验证法,对四个结论逐一进行判断,最后得到结论.
解答:解:当T=3,则当x为有有理数时,x+3也为有理数,则f(x+3)=f(x);
则当x为有无理数时,x+3也为无理数,则f(x+3)=f(x);
故T为函数的周期,即f(x)是周期函数,3是它的一个周期,故①正确;
若x为有理数,则-x也为有理数,则f(-x)=f(x);
若x为无理数,则-x也为无理数,则f(-x)=f(x);
故f(x)是偶函数,故②正确
存在有理数0,使得f(x)=cosx=0成立
故方程f(x)=cosx有有理根,即③正确;
方程f[f(x)]=f(x)可等价变形为f(x)=1
故方程f[f(x)]=f(x)与方程f(x)=1的解集相同,故④正确
故选D
点评:要判断一个函数的奇偶性,我们需要经过两个步骤:①判断函数的定义域是否关于原点对称;②判断f(-x)与f(x)的值是相等还是相反.反之,当已知函数为奇函数或偶函数时,要注意此时函数的定义域一定关于原点对称,且f(-x)与f(x)的值是相反或相等.要判断一一个函数是否为周期函数,则要判断f(x+T)=f(X)是否恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案