精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

(1)求直线的极坐标方程和曲线的参数方程;

(2)若,直线与曲线交于两点,求的值.

【答案】1为参数);(2

【解析】

(1)先将直线的参数方程消去参数化为普通方程,再直角坐标方程与极坐标方程的互化公式,即求出直线的极坐标方程;同样由直角坐标方程与极坐标方程的互化公式,先将曲线的极坐标方程化为直角坐标方程,进而可求出曲线的参数方程;

(2)求出直线的参数方程的标准形式,然后利用参数的几何意义,即可求出的值.

(1)依题意,得直线,即

所以直线的极坐标方程为.

因为,则,即.

所以曲线的参数方程为(为参数).

(2)因为直线经过点

故直线的参数方程的标准形式为,代入

可得,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.

1)将曲线的参数方程化为极坐标方程;

2)设直线的参数方程为(其中为参数),若与曲线相交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为ABCDE五个等级.某试点高中2019年参加“选择考”总人数是2017年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2017年和2019年“选择考”成绩等级结果,得到如图表:

针对该校“选择考”情况,2019年与2017年比较,下列说法正确的是( )

A.获得A等级的人数不变B.获得B等级的人数增加了1

C.获得C等级的人数减少了D.获得E等级的人数不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲烷,化学式,是最简单的有机物,在自然界分布很广,也是重要的化工原料.甲烷分子结构为正四面体结构(正四面体是每个面都是正三角形的四面体),碳原子位于正四面体的中心,4个氢原子分别位于正四面体的4个顶点.若相邻两个氢原子间距离为,则相邻的碳、氢原子间的距离是(不计原子大小)(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式,此事引起了国际数学界的轰动许多专家认为这是数论研究中的一项重大突破世界主流媒体都对这项重要成果作了报道并给予了高度评价,印度媒体甚至称赞张益唐为中国的拉马努金”.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数,素数对称为孪生素数.在不超过20的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微博橙子辅导用简单随机抽样方法抽取了100名同学,对其社会实践次数进行调查,结果如下:

若将社会实践次数不低于12次的学生称为社会实践标兵”.

1)将频率视为概率,估计该校1600名学生中社会实践标兵有多少人?

2)从已抽取的8社会实践标兵中随机抽取4位同学参加社会实践表彰活动.

(ⅰ)设A为事件"抽取的4位同学中既有男同学又有女同学,求事件A发生的概率;

(ⅱ)用X表示抽取的社会实践标兵中男生的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.

(I)求椭圆的方程;

(II)设与圆相切的直线交椭圆,两点(为坐标原点),的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为,月租费为万元;每间肉食水产店面的建造面积为,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则的最大值为_________万元.

查看答案和解析>>

同步练习册答案