精英家教网 > 高中数学 > 题目详情
10.三角形的三个顶点分别为A(7,-4),B(1,1),C(-5,-7),求三角形的三个内角.

分析 由已知可求|AB|,|AC|,|BC|,$\overrightarrow{AB}$=(-6,5),$\overrightarrow{AC}$=(-12,-3),$\overrightarrow{BC}$=(-6,-8),从而可求$\overrightarrow{AB}$•$\overrightarrow{AC}$=72-15=57,$\overrightarrow{BA}•\overrightarrow{BC}$=-36+40=4,$\overrightarrow{CA}•\overrightarrow{CB}$=72+24=96,利用向量夹角公式即可求解.

解答 解:∵三角形的三个顶点分别为A(7,-4),B(1,1),C(-5,-7),
∴由题意和两点间的距离公式可得:|AB|=$\sqrt{(7-1)^{2}+(-4-1)^{2}}$=$\sqrt{61}$,同理可得|AC|=3$\sqrt{17}$,|BC|=10,
∴$\overrightarrow{AB}$=(-6,5),$\overrightarrow{AC}$=(-12,-3),$\overrightarrow{BC}$=(-6,-8),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=72-15=57,
∴cosA=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|×|\overrightarrow{AC}|}$=$\frac{57}{\sqrt{61}×3\sqrt{17}}$,解得:A≈53.84°
$\overrightarrow{BA}•\overrightarrow{BC}$=-36+40=4,
cosB=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|×\overrightarrow{|BC}|}$=$\frac{4}{\sqrt{61}×10}$,解得:B≈87.06°
$\overrightarrow{CA}•\overrightarrow{CB}$=72+24=96,
cosC=$\frac{\overrightarrow{CB}•\overrightarrow{CA}}{|\overrightarrow{CB}|×|\overrightarrow{CA}|}$=$\frac{96}{3\sqrt{17}×10}$,解得:B≈39.09°

点评 本题主要考查了两点间的距离公式,平面向量的夹角公式的应用,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若函数y=a-bsinx的最大值为$\frac{3}{2}$,最小值为$-\frac{1}{2}$,
(1)求a,b的值;
(2)求函数y=-asinx取得最大值时的x的值;
(3)请写出函数y=-asinx的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)在x=1处可导,则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{2△x}$等于$\frac{1}{2}$f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=log2(ax2-4x+4)的定义域为R,则实数a的取值范围是(  )
A.(0,1]B.[0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga$\frac{x-2}{x+2}(a>0$且a≠1).
(1)求f(x)的定义域;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若数列{an}满足:对任意的n∈N*,只有有限个正整数m使得am<n成立,记这样的m的个数为(an*,则得到一个新数列{(an*}.例如,若数列{an}是1,2,3…,n,…,则数列{(an*}是0,1,2,…n-1,…已知对任意的n∈N*,an=n2,则((an**=(  )
A.2nB.2n2C.nD.n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow a=({cosα,sinα}),\overrightarrow b=({cosβ,sinβ})$,且向量$\overrightarrow a,\overrightarrow b$满足关系式:$|{k\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+k\overrightarrow b}|$,其中k>0.
(1)求证:$({\overrightarrow a+\overrightarrow b})⊥({\overrightarrow a-\overrightarrow b})$;
(2)试用k表示$\overrightarrow a•\overrightarrow b$,求$\overrightarrow a•\overrightarrow b$的最大值,并求此时向量$\overrightarrow a,\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式(a-2)x2+2(a-2)x-3<0对一切实数x恒成立,则实数a的取值范围是(-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1的一个焦点坐标为(1,0),则实数m的值等于4.

查看答案和解析>>

同步练习册答案