精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知定义域为的函数满足.
(1)若,求;又若,求
(2)设有且仅有一个实数,使得,求函数的解析表达式.

解:(2)因为对任意有 ,
所以 ,,又,从而………………3分
,则,即………………………5分
(2)因为对任意,有
又有且仅有一个实数,使得,故对任意,有…7分
在上式中令,有 ………………………………………8分
又因为,所以,故 ………………………10分
,则,但方程有两个不相同实根,与题设条件矛盾,故.
,则有,易验证该函数满足题设条件.  综上,所求函数的解析表达式为……………………………………12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且f(1)=f(2)=.(1)求;(2)判断fx)的奇偶性;(3)试判断函数在上的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 设a > 1,函数
(1)求的反函数
(2)若在[0,1]上的最大值与最小值互为相反数,求a的值;
(3)若的图象不经过第二象限,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x0,使得f(x)= x0,求函数f(x)的解析表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数.
(1)若对任意恒成立,求实数的取值范围;
(2)若函数的图像与直线有且仅有三个公共点,且公共点的横坐标的最大值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=ax2+(b-8)x-a-ab , 当x(-∞,-3)(2,+∞)时, <0,当x(-3,2)时>0 .
(1)求在[0,1]内的值域.
(2)若ax2+bx+c≤0的解集为R,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图,函数y=|x|在x∈[-1,1]的图象上有两点A、B,AB∥
Ox轴,点M(1,m)(m是已知实数,且m>)是△ABC的边BC的中点。
(Ⅰ)写出用B的横坐标t表示△ABC面积S的函数解析式S=f(t);
(Ⅱ)求函数S=f(t)的最大值,并求出相应的C点坐标。

查看答案和解析>>

同步练习册答案