精英家教网 > 高中数学 > 题目详情
(2013•奉贤区一模)若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:
①f(x)=0是常数函数中唯一一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x2是“λ-伴随函数”;
④“
1
2
-伴随函数”至少有一个零点.
其中正确结论的个数是(  )个.
分析:①、设f(x)=C则(1+λ)C=0,当λ=-1时,可以取遍实数集,可判断①;
②、假设f(x)=x是一个“λ-同伴函数”,则x+λ+λx=0,则有λ+1=λ=0,解方程可判断②;
③、假设f(x)=x2是一个“λ-同伴函数”,则(x+λ)2+λx2=0,则有λ+1=2λ=λ2=0,解方程可判断③;
④、令x=0,可得f(
1
2
)=-
1
2
f(0).若f(0)=0,f(x)=0有实数根;若f(0)≠0,f(
1
2
)•f(0)=-
1
2
(f(0))2<0.可得f(x)在(0,
1
2
)上必有实根,可判断④
解答:解:①、设f(x)=C是一个“λ-同伴函数”,则(1+λ)C=0,当λ=-1时,可以取遍实数集,因此f(x)=0不是唯一一个常值“λ-同伴函数”,故①错误
②、假设f(x)=x是一个“λ-同伴函数”,则x+λ+λx=0对任意实数x成立,则有λ+1=λ=0,而此式无解,所以f(x)=x不是“λ-伴随函数”,故②正确;
③、假设f(x)=x2是一个“λ-同伴函数”,则(x+λ)2+λx2=0,
即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ-同伴函数”.故③错误
④、令x=0,得f(
1
2
)+
1
2
f(0)=0.所以f(
1
2
)=-
1
2
f(0).
若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f(
1
2
)•f(0)=-
1
2
(f(0))2<0.
又因为f(x)的函数图象是连续不断,所以f(x)在(0,
1
2
)上必有实数根.
因此任意的“
1
2
-同伴函数”必有根,即任意“
1
2
-同伴函数”至少有一个零点.故④正确.
故答案为:B.
点评:本题考查的知识点是函数的概念及构成要素,函数的零点,正确理解f(x)是λ-同伴函数的定义,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,则实数m的取值范围是
-4<m<2
-4<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题,假命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知Sn是等差数列{an}(n∈N*)的前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)等比数列{cn}满足cn+1+cn=10•4n-1,n∈N*,数列{an}满足cn=2an
(1)求{an}的通项公式;
(2)数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和.求
lim
n→∞
Tn

(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|,若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.已知C是直线y=
3
4
x+3上的一个动点,点D的坐标是(0,1),则点C与点D的“非常距离”的最小值是
8
7
8
7

查看答案和解析>>

同步练习册答案