精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABDC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4.

(1)设MPC上的一点,求证:平面MBD⊥平面PAD;

(2)求四棱锥P-ABCD的体积.

【答案】(1)证明见解析;(2) 16.

【解析】试题分析:

(1)证得ADBD,而面PAD⊥面ABCD,∴BD⊥面PAD,∴面MBD⊥面PAD.

(2)作辅助线POAD,PO为四棱锥PABCD的高,求得S四边形ABCD=24.VPABCD=16.

试题解析:

(1)证明:在△ABD中,∵AD=4,BD=8,AB=4,∴AD2BD2AB2.∴ADBD.

又∵面PAD⊥面ABCD,面PAD∩面ABCDAD,BDABCD,∴BD⊥面PAD.

BDBDM,∴面MBD⊥面PAD.

(2)解:过PPOAD,

∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥PABCD的高.

又△PAD是边长为4的等边三角形,∴PO=2.

在底面四边形ABCD中,ABDC,AB=2DC,∴四边形ABCD为梯形.

在Rt△ADB中,斜边AB边上的高为,此即为梯形的高.

S四边形ABCD×=24.

VPABCD×24×2=16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知矩形所在平面与底面垂直,在直角梯形中, .

(1)求证: 平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校要用甲、乙、丙三辆校车把教职工从老校区接到校本部,已知从老校区到校本部有两条公路,校车走公路①时堵车的概率为,校车走公路②时堵车的概率为p.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆校车是否堵车相互之间没有影响.

(1)若三辆校车中恰有一辆校车被堵的概率为,求走公路②堵车的概率;

(2)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上.

求椭圆的标准方程;

已知动直线过点且与椭圆交于两点.试问轴上是否存在定点,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求函数切线斜率中的最大值;

(Ⅱ)若关于的方程有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.已知曲线的极坐标方程为.倾斜角为,且经过定点的直线与曲线交于两点.

(Ⅰ)写出直线的参数方程的标准形式,并求曲线的直角坐标方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中, 平面 平面,且是边长为4的等边三角形, 与平面所成角的余弦值为 是线段上一点.

(Ⅰ)若是线段的中点,证明:平面平面

(Ⅱ)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.

(1)求证:|EA|+|EB|为定值;

(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

同步练习册答案