精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为
(1)求椭圆的方程;
(2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;
(1)依题意,椭圆过点,故,解得。…………(2分)
椭圆的方程为。……………………………(5分)
(2)设,直线的方程为,……………(6分)

代入椭圆方程,得, ……(7分)
,则
,故点的坐标为。…(8分)
同理,直线的方程为,代入椭圆方程,
,则
可得点的坐标为。………………………(10分)
①若时,直线的方程为,与轴交于点;……11
②若,直线的方程为,…(13分)
,解得。综上所述,直线必过轴上的定点
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1) 求椭圆的方程;
(2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆C:=1的左.右焦点为,离心率为,直线与x轴、y轴分别交于点是直线与椭圆C的一个公共点,是点关于直线的对称点,设
(Ⅰ)证明:; (Ⅱ)确定的值,使得是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两个焦点的坐标分别为,并且经过点.过左焦点,斜率为的直线与椭圆交于两点.设,延长分别与椭圆交于两点.
(I)求椭圆的标准方程;  (II)若点,求点的坐标;
(III)设直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则(   ).
A.50B.35C.32D.41

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆: ()的左、右焦点,过斜率为1的直线与该椭圆相交于P,Q两点,且成等差数列.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过轴的垂线,垂足为,连接,
(1)若直线的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;
(2)若的延长线与椭圆的交点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的一个焦点坐标为(0,1),则实数的值等于_____        ____,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

. (本小题满分12分)
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.
(I)当m =1时,求椭圆C2的方程;
(II)当的边长恰好是三个连续的自然数时,求面积的最大值.

查看答案和解析>>

同步练习册答案