精英家教网 > 高中数学 > 题目详情

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)过作直线交椭圆于两点,使,求的面积.

【答案】(1);(2).

【解析】

试题分析:(1)根据是面积为的直角三角形,,可知为直角,从而,即,又,消去即得离心率,可得,从而求得椭圆方程;(2)设直线的方程为,代入椭圆方程可得,根据韦达定理,可得,写出的坐标,由于,据此可求得的值,因为的面积,所以求出即得的面积.

试题解析:(1)设椭圆的方程为是面积为的直角三角形,为直角,从而,得

,在中,

椭圆标准方程为.

(2)由(1)知,由题意,直线的倾斜角不为,故可设直线的方程为,代入椭圆方程,消元可得

,当时,可化为

的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥P-ABC中,ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且PDB是正三角形,PAPC。

.

(1)求证:DM平面PAC;

(2)求证:平面PAC平面ABC;

(3)求三棱锥M-BCD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: =.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率,且椭圆经过点,过椭圆的左焦点且不与坐标轴垂直的直线交椭圆两点.

1)求椭圆的方程;

2)设线段的垂直平分线与轴交于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为数列的前项和,的等比中项.

(1)求数列的通项公式;

(2)若为整数,,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届世界低碳经济大会在南昌召开,本届大会以节能减排,绿色生态为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新式艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.

(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线,过焦点斜率大于零的直线交抛物线于两点,且与其准线交于点

1若线段的长为,求直线的方程;

2上是否存在点,使得对任意直线,直线的斜率始终成等差数列,若存在求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中

() 在其定义域内为单调递减函数,求的取值范围;

() 是否存在实数使得时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由其中是自然对数的底数,=2.71828.

查看答案和解析>>

同步练习册答案