精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且交于两点,已知点的极坐标为.

1)求曲线的普通方程和直线的直角坐标方程,并求的值;

2)若矩形内接于曲线且四边与坐标轴平行,求其周长的最大值.

【答案】(1)曲线的普通方程为;直线的直角坐标方程为(2)

【解析】

(1)结合参数方程、极坐标方程及普通方程间的关系,转化即可求出曲线的普通方程和直线的直角坐标方程;求出直线的参数方程的标准形式,并代入曲线的普通方程中,得到关于的一元二次方程,结合可求出答案;(2)设点在第一象限,且,可知矩形的周长为,利用三角函数的性质求最大值即可.

1)依题意,得点的直角坐标为,曲线的普通方程为.

由直线,得其直角坐标方程为.

所以直线的参数方程为为参数),代入中,

可得,所以.

2)不妨设点在第一象限,且.

由椭圆的对称性可知,矩形的周长为.

,所以当时,矩形的周长取最大值,最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

2)对任意的,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】垃圾分类是改善环境,节约资源的新举措.住建部于628日拟定了包括我市在内的46个重点试点城市,要求这些城市在2020年底基本建成垃圾分类处理系统.为此,我市某中学对学生开展了垃圾分类有关知识的讲座并进行测试,将所得测试成绩整理后,绘制出频率分布直方图如图所示.

1)求频率分布直方图中a的值,并估计测试的平均成绩;

2)将频率视为相应的概率,如果从参加测试的同学中随机选取4名同学,这4名同学中测试成绩在的人数记为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公平正义是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?

某单位准备通过考试(按照高分优先录取的原则)录用名,其中个高薪职位和个普薪职位.实际报名人数为名,考试满分为. 考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:

试结合此频率分布直方图估计:

(1)此次考试的中位数是多少分(保留为整数)?

(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,是等边三角形,是线段的中点,是线段上靠近的四等分点,平面平面.

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在矩形中,为边的中点,将沿直线折起到平面)的位置,为线段的中点.

1)求证:平面

2)已知,当平面平面时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,设点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对一切正实数,不等式恒成立,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,已知,顶点P在平面ABC上的射影为的外接圆圆心.

1)证明:平面平面ABC

2)若点M在棱PA上,,且二面角P-BC-M的余弦值为,试求的值.

查看答案和解析>>

同步练习册答案