精英家教网 > 高中数学 > 题目详情

【题目】已知,均为奇函数,上的最大值为,则在的最小值为__________.

【答案】-1

【解析】

根据定义得出f(﹣x+fx)=0g(﹣x+gx)=0,即Fx+F(﹣x)=4,根据Fx)图象关于(02)对称,求解得出Fx)在(﹣0)上的最小值F(﹣x0)=45=﹣1

fx)和gx)都是定义域在R上的奇函数,若Fx)=afx+bgx+2

Fx)﹣2afx+bgx)为奇函数,

f(﹣x+fx)=0g(﹣x+gx)=0

Fx+F(﹣x)=4

Fx)图象关于(02)对称,

∵在(0+∞)上有最大值为5

∴最大值为Fx0)=5

Fx)在(﹣0)上的最小值F(﹣x0)=45=﹣1

Fx)在(﹣0)上的最小值为﹣1

故答案为:﹣1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某兴趣小组进行“野岛生存”实践活动,他们设置了个取水敞口箱.其中个采用种取水法,个采用种取水法.如图甲为种方法一个夜晚操作一次个水箱积取淡水量频率分布直方图,图乙为种方法一个夜晚操作一次个水箱积取淡水量频率分布直方图.

(1)设两种取水方法互不影响,设表示事件“法取水箱水量不低于法取水箱水量不低于”,以样本估计总体,以频率分布直方图中的频率为概率,估计的概率;

(2)填写下面列联表,并判断是否有的把握认为箱积水量与取水方法有关.

箱积水量

箱积水量

箱数总计

箱数总计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,数列的前项和为,下列说法错误的是( )

A. 有最大值,则也有最大值

B. 有最大值,则也有最大值

C. 若数列不单调,则数列也不单调

D. 若数列不单调,则数列也不单调

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:

1)填充频率分布表的空格(将答案直接填在表格内)

2)补全频数分布直方图;

3)若成绩在75.585.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数一段图象如图所示。

(1)求出函数的解析式;

(2) 函数的图像可由函数y=sinx的图像经过怎样的平移和伸缩变换而得到?

(3) 求出的单调递增区间;

(4) 指出当取得最小值时的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费.

1)当每辆车的月租金定为元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义域为的偶函数,当时,,若关于的方程,有且仅有5个不同实数根,则实数a的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的体积是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案