分析 由已知数据可得a1和a7的方程组,解方程可得a1和q,再由求和公式可得.
解答 解:∵等比数列{an}的各项都为正数,其前n和为Sn,且a1+a7=9,a4=2$\sqrt{2}$,
∴a1a7=a42=8,∴a1和a7为方程x2-9x+8=0的两根,
解方程可得$\left\{\begin{array}{l}{{a}_{1}=1}\\{{a}_{7}=8}\end{array}\right.$,或$\left\{\begin{array}{l}{{a}_{1}=8}\\{{a}_{7}=1}\end{array}\right.$,
当$\left\{\begin{array}{l}{{a}_{1}=1}\\{{a}_{7}=8}\end{array}\right.$时,公比q满足q6=$\frac{{a}_{7}}{{a}_{1}}$=8,解得q=$\sqrt{2}$,
S6=$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=$\frac{1×(1-8)}{1-\sqrt{2}}$=7$\sqrt{2}$+7;
当$\left\{\begin{array}{l}{{a}_{1}=8}\\{{a}_{7}=1}\end{array}\right.$时,公比q满足q6=$\frac{{a}_{7}}{{a}_{1}}$=$\frac{1}{8}$,解得q=$\frac{\sqrt{2}}{2}$,
S6=$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=$\frac{8×(1-\frac{1}{8})}{1-\frac{\sqrt{2}}{2}}$=7$\sqrt{2}$+14
故答案为:7$\sqrt{2}$+7或7$\sqrt{2}$+14
点评 本题考查等比数列的通项公式和求和公式,涉及分类讨论的思想,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{4}$ | B. | $\frac{5}{8}$ | C. | -$\frac{7}{16}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com