【题目】已知数列满足。
(1)若成等比数列,求的值。
(2)是否存在,使数列为等差数列?若存在,求出所有这样的;若不存在,说明理由。
【答案】(1)或;(2) 当且仅当时,数列为等差数列.
【解析】
试题(1)把表示为的式子,通过对的范围进行讨论去掉绝对值符号,根据成等比数列可得关于的方程,解出即可;
(2)假设这样的等差数列存在,则成等差数列,即,将(1)的过程代入,得到关于的方程,分情况①当时②当时,求得进行判断;看是否与矛盾.此题的难点在与讨论绝对值的几何意义,去绝对值.
试题解析:(1)∵,∴,.
(ⅰ)当时,,
由,,成等比数列得:
∴,解得. 3分
(ⅱ)当时,
∴,解得(舍去)或.
综上可得或. 6分
(2)假设这样的等差数列存在,则
由,得,即.
(ⅰ)当时,,解得,从而(),此时是一个等差数列; 9分
(ⅱ)当时,,解得,与矛盾;
综上可知,当且仅当时,数列为等差数列. 12分
科目:高中数学 来源: 题型:
【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学基本公式大赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设整数,对置于个点及点处的卡片作如下操作:操作:若某个点处的卡片数不少于3,则可从中取出三张,在三点、、处各放一张;操作:若点处的卡片数不少于,则可从中取出张,在个点处各放一张。证明:只要放置于这个点处的卡片总数不少于,则总能通过若干次操作,使得每个点处的卡片数均不少于。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用0,1,2,3,4,5这六个数字,完成下面三个小题.
(1)若数字允许重复,可以组成多少个不同的五位偶数;
(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;
(3)若直线方程中的a,b可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足an+1+(-1)n an =2n-1,则{an}的前64项和为( )
A. 4290 B. 4160 C. 2145 D. 2080
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(Ⅰ)请估计一下这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com