精英家教网 > 高中数学 > 题目详情
(2011•盐城二模)如图,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,动点P在△BCD内运动(含边界),设
AP
AB
AD
(α,β∈R)
,则α+β的取值范围是
[1,
4
3
]
[1,
4
3
]
分析:建立平面直角坐标系,将α+β的取值范围的求解,转化为利用线性规划的方法解决即可.
解答:解:建立如图所示的平面直角坐标系,设P(x,y),

(x,y)=α•(3,0)+β•(0,1),∴α=
x
3
,β=y

∴z=α+β=
x
3
+y
,即z表示直线y=-
x
3
+z
的纵截距
∵B(3,0),D((0,1),C(1,1)
∴DB的方程为
x
3
+y=1
,BC的方程为x+2y-3=0
根据图象,可得z=
x
3
+y
在BD边取得最小值1,在点C处取得最大值
4
3

∴α+β的取值范围是[1,
4
3
]

故答案为:[1,
4
3
]
点评:本题考查取值范围的确定,考查数形结合的数学思想,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•盐城二模)选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π3
),它们相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知a,b,c是非零实数,则“a,b,c成等比数列”是“b=
ac
”的
必要不充分
必要不充分
条件(从“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知f(x)=cosx,g(x)=sinx,记Sn=2
2n
k=1
f(
(k-1)π
2n
)
-
1
2n
2n
k=1
g(
(k-n-1)π
2n
)
,Tm=S1+S2+…+Sm,若Tm<11,则m的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在如图所示的多面体中,已知正三棱柱ABC-A1B1C1的所有棱长均为2,四边形ABCD是菱形.
(Ⅰ)求证:平面ADC1⊥平面BCC1B1
(Ⅱ)求该多面体的体积.

查看答案和解析>>

同步练习册答案