精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow a=(1,-1),\overrightarrow b=(1,2)$,向量$\overrightarrow C$符合$(\overrightarrow c+\overrightarrow b)⊥\overrightarrow a,(\overrightarrow c-\overrightarrow a)$∥$\overrightarrow b$,则$\overrightarrow c$=(  )
A.(2,1)B.(1,0)C.$(\frac{3}{2},\frac{1}{2})$D.(0,-1)

分析 利用向量垂直与数量积的关系、向量共线定理即可得出.

解答 解:设$\overrightarrow{c}$=(x,y),则$\overrightarrow{c}+\overrightarrow{b}$=(x+1,y+2),$\overrightarrow{c}-\overrightarrow{a}$=(x-1,y+1),
∵$(\overrightarrow c+\overrightarrow b)⊥\overrightarrow a,(\overrightarrow c-\overrightarrow a)$∥$\overrightarrow b$,
∴$\left\{\begin{array}{l}{(x+1)-(y+2)=0}\\{2(x-1)=y+1}\end{array}\right.$,
解得x=2,y=1.
则$\overrightarrow c$=(2,1).
故选:A.

点评 本题考查了向量垂直与数量积的关系、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x|x-a|-lnx,若f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.0<a<1,函数$f(x)={log_a}({a^{2x}}-{a^x}-1)$,则f(x)>0的x取值范围是(  )
A.(-∞,loga2)B.(loga2,+∞)C.(-∞,${log_a}\frac{{\sqrt{5}+1}}{2}$)D.(loga2,loga$\frac{{\sqrt{5}+1}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga(x-1)+x-3的图象经过点(5,4)
(1)求实数a的值;
(2)求证:f(x)在其定义域内有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:x≥k,q:x2-x>2,如果p是q的充分不必要条件,则实数k的取值范围为(  )
A.[1,+∞)B.(2,+∞)C.[2,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).
从A类工人中的抽查结果和从B类工人中的抽查结果分别如表1和表2.
表1:
生产能
力分组
[100,110)[110,120)[120,130)[130,140)[140,150)
人数     4    8    x   5    3
表2:
生产能
力分组
[110,120)[120,130)[130,140)[140,150)
人数  6y 3618
先确定x、y,再完成频率分布直方图,并估计该工厂工人的生产能力的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a=3${\;}^{-\frac{1}{3}}$,b=log2$\frac{1}{5}$,c=log35,则a,b,c的大小关系为c>b>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x-1},x>1}\\{{x}^{2},x≤1}\end{array}\right.$.
(Ⅰ)画出函数f(x)的图象,并根据图象写出该函数的单调递减区间;
(Ⅱ)若f(x)>$\frac{1}{4}$,求出x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知四面体ABCD,AD⊥平面BCD,BC⊥CD,AD=2,BD=4,则四面体ABCD外接球的表面积等于(  )
A.$\frac{{20\sqrt{5}}}{3}$πB.20πC.$\frac{20}{3}π$D.$\frac{100}{3}π$

查看答案和解析>>

同步练习册答案