精英家教网 > 高中数学 > 题目详情

【题目】已知为实数,.

(1)若,求上的最大值和最小值;

(2)若上都递减,求的取值范围.

【答案】(1)最大值为22,最小值;(2)

【解析】

试题分析:(1)首先求出导函数,然后根据导函数与0的关系求出函数的单调区间,由此求得最大值与最小值;(2)根据函数的单调性与导函数的关系,结合判别式建立不等式组求解即可.

试题解析:f(x)=-3x26ax+2a+7.

1f(-1)=-4a+4=0,所以a=1. 2

f(x)=-3x26x+9=-3(x-3)(x+1),

2x<-1时,f(x)<0,f(x)单调递减;

当-1<x2时,f(x)>0,f(x)单调递增,

f(-2)=2,f(-1)=-5,f(2)=22

f(x)在[2,2]上的最大值为22,最小值为-5 6

(2)由题意得x(-2][3,)时,f(x)0成立, 7

f(x)=0可知,判别式>0,所以解得:-a1.

所以a的取值范围[,1] 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

)证明:

)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最大值;

(2)当时,函数有最小值. 的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为线段上一点,的中点.

(1)证明:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点在椭圆上.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;

(3)在第(2)问的条件下,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就2015年毕业大学生的月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图所示,每个分组包括左端点,不包括右端点,如第一组表示.

(1)求毕业大学生月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析大学生的收入与所学专业、性别等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.

(1)求曲线的方程;

(2)若双曲线的右焦点即为曲线的右顶点,直线的一条渐近线.

.求双曲线C的方程;

.过点的直线,交双曲线两点,交轴于点(点与的顶点不重合),当,且时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:

(1)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;

(2)根据以上数据完成下面的列联表:在犯错概率小于的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

,其中.

查看答案和解析>>

同步练习册答案