精英家教网 > 高中数学 > 题目详情
已知F1,F2分别是椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB相交于点D,与椭圆C1相交于点E,F两点,求四边形AEBF面积的最大值.
(1)由抛物线C1:x2=4y的焦点,得焦点F1(1,0).
设M(x0,y0)(x0<0),由点M在抛物线上,
|MF1|=
5
3
=y0+1
x20
=4y0
,解得y0=
2
3
x0=-
2
6
3

而点M在椭圆C1上,∴
(
2
3
)2
a2
+
(-
2
6
3
)2
b2
=1
,化为
4
9a2
+
8
3b2
=1

联立
c2=1=a2-b2
4
9a2
+
8
3b2
=1
,解得
a2=4
b2=3

故椭圆的方程为
y2
4
+
x2
3
=1

(2)由(1)可知:|AO|=
3
,|BO|=2.设E(x1,y1),F(x2,y2),其中x1<x2
把y=kx代人
y2
4
+
x2
3
=1
,可得x2=-x1=
2
3
3k2+4
,x2>0,y2=-y1>0,且4
x22
+3
y22
=12

S△BOE=S△BOF=
1
2
×2x2
S△AOF=S△AOE=
1
2
×
3
y2

故四边形AEBF的面积S=S△BEF+S△AEF=2x2+
3
y2
=
(2x2+
3
y2)2

=
4
x22
+3
y22
+4
3
y1y2
4
x22
+3
y22
+2×
(2x2)2+(
3
y2)2
2
=2
6

当且仅当2x2=
3
y2
时上式取等号.
∴四边形AEBF面积的最大值为2
6
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)已知F1,F2分别是椭圆E:
x25
+y2=1
的左、右焦点F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(Ⅰ)求圆C的方程;
(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)已知F1、F2分别是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦点,P是双曲线的上一点,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,则双曲线的离心率是
 

查看答案和解析>>

同步练习册答案