【题目】数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标是( )
A. (-4,0) B. (0,-4) C. (4,0) D. (4,0)或(-4,0)
【答案】A
【解析】分析:设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标.
详解:
设C(m,n),由重心坐标公式得,
三角形ABC的重心为(,),
代入欧拉线方程,得-+2=0,
整理,得m-n+4=0,①
AB的中点为(1,2),kAB==-2,
AB的中垂线方程为y-2=(x-1),即x-2y+3=0.
联立解得
∴△ABC的外心为(-1,1).
则(m+1)2+(n-1)2=32+12=10,
整理,得m2+n2+2m-2n=8,②
联立①②,得m=-4,n=0或m=0,n=4.
当m=0,n=4时B,C重合,舍去.
∴顶点C的坐标是(-4,0).
故选A.
科目:高中数学 来源: 题型:
【题目】某厂生产和两种产品,按计划每天生产各不得少于10吨,已知生产产品吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产产品1吨需要用煤4吨,电5度,劳动力10个,如果产品每吨价值7万元, 产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产两种产品各多少才是合理的?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是圆上任意一点,过作轴的垂线段, 为垂足.当点在圆上运动时,线段中点的轨迹为曲线(包括点和点),为坐标原点.
(Ⅰ)求曲线的方程;
(Ⅱ)直线与曲线相切,且与圆相交于两点,当的面积最大时,试求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【河南省新乡市2017届高三上学期第一次调研】设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为.
(1)求椭圆和抛物线的方程;
(2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直
线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:①若,则;②若,则;③若,则;④若, 且,则的最小值为9;其中正确命题的序号是______(将你认为正确的命题序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中
(1)当时,求函数在处的切线方程;
(2)若函数在定义域上有且只有一个极值点,求实数的取值范围;
(3)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com