精英家教网 > 高中数学 > 题目详情
已知sinα=-
5
13
,且π<α<
2
,求角α的其它两个三角函数值.
考点:同角三角函数间的基本关系
专题:三角函数的求值
分析:由条件利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得角α的其他两个三角函数值.
解答: 解:∵已知sinα=-
5
13
,且π<α<
2
,则cosα=-
1-sin2α
=-
12
13
,tanα=
sinα
cosα
=
5
12
点评:本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x0∈R,使得x02+2x0+4>0”的否定为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)命题“若x2-3x+2=0,则x=1“的逆命题为“若x≠1,则x2-3x+2=0”;
(2)定义在R上的奇函数f(x),满足f(x+2)=-f(x),则f(6)=0;
(3)函数y=log2x+x2-2在区间(1,2)内只有一个零点;
(4)已知p:?x∈R,sinx≤1,q:若a<b,则am2<bm2,则p∧q为真命题.
其中正确命题的序号是
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(1+x)+alog2(1-x)为奇函数,解不等式:f-1(x)<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,cosA=
b
c
,则△ABC形状是(  )
A、正三角形
B、直角三角形
C、等腰三角形或直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的增函数,且对任意的x>0,y>0都满足f(
x
y
)=f(x)-f(y).
(1)求f(1)的值;
(2)若x>0,证明f(x2)=2f(x);
(3)若f(3)=1,解不等式f(x+3)-f(
1
x-1
)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1的方向向量
a
=(2,4,x),直线l2的方向向量
b
=(2,y,2),若|
a
|=6,且
a
b
,则x+y的值是(  )
A、-3或1B、3或-1
C、-3D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,给出的是计算
1
2
+
1
4
+
1
6
+…+
1
2016
的值的程序框图,其中判断框内应填入的是(  )
A、i≤2021
B、i≤2019
C、i≤2017
D、i≤2015

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|sinx|的一个单调递增区间是(  )
A、(
π
2
,π
B、(π,2π)
C、(π,
2
D、(0,π)

查看答案和解析>>

同步练习册答案