精英家教网 > 高中数学 > 题目详情
1.已知f(x)=ln(x2+2016)+|2015x|,当f(2m-1)>f(m-1),则m的取值范围是(  )
A.m>0B.m<0C.m$>\frac{2}{3}$或m<0D.m>1

分析 根据题意得f(x)是定义域R上的偶函数,且x≤0时f(x)是减函数,x>0时f(x)是增函数;由此把f(2m-1)>f(m-1)化为|2m-1|>|m-1|,从而求出m的取值范围.

解答 解:∵f(x)=ln(x2+2016)+|2015x|,
∴f(-x)=f(x),
∴f(x)是定义域R上的偶函数,
且x≤0时f(x)是减函数,x>0时f(x)是增函数;
∴当f(2m-1)>f(m-1)时,
有|2m-1|>|m-1|,
即4m2-4m+1>m2-2m+1,
化简得3m2-2m>0,
解得m<0或m>$\frac{2}{3}$;
∴m的取值范围是m<0或m>$\frac{2}{3}$.
故选:C.

点评 本题考查了函数的奇偶性与单调性的应用问题,也考查了转化思想以及不等式的解法与应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在等差数列中,已知a4+a17=8,求S20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)在实数集中满足f(xy)=f(x)+f(y),且f(x)在定义域内是减函数.
(1)求f(1)的值;
(2)若f(2a-3)<0,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,保持点P(3,3)与原点的距离不变,并绕原点旋转60°到P′位置,设点P′的坐标为(x′,y′).
(1)点P与原点之间的距离是多少?
(2)向量$\overrightarrow{OP}$与x轴正方向的夹角是多少?
(3)求点P′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的通项an=2n+1,由bn=$\frac{{a}_{1}+{a}_{2}+{a}_{3}+…+{a}_{n}}{n}$所确定的数列{bn}的前n项和是Sn=$\frac{1}{2}{n}^{2}$+$\frac{5}{2}n$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若y=-log2(x2-ax-a)在区间(-∞,1-$\sqrt{3}$)上是增函数,则a的范围是[2-2$\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{bn}中,b1=2,bn+1=$\frac{3{b}_{n}+4}{2{b}_{n}+3}$(n∈N*),求b2,b3,试判定bn与$\sqrt{2}$的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:(5a-$\frac{1}{2}$b2)(25a2+$\frac{1}{4}$b4+$\frac{5}{2}$ab2)=125a3-$\frac{1}{8}{b}^{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x,y满足条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=$\frac{x+y+2}{x+3}$的最小值(  )
A.-$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{13}{6}$D.4

查看答案和解析>>

同步练习册答案